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Abstract. This paper presents a stimuli-driven at-
tention system based on reflectivity and range data
provided by a 3D range sensor.

In comparison to the common approach of using
2D color images for the attention system, we incor-
porate 3D features derived from the range data to
increase the influence of the scene structure like ob-
ject boundaries and transitions. Our architecture is
based on three stages, the input is decomposed into
feature maps, which result in activation maps, and
then those are combined into a saliency map.

We show the benefit of jump and roof edges in ad-
dition to orientation and intensity features and evalu-
ate different combinations of the features on real data
captured by a tilting laser scanner.

1. Introduction

Recent research indicates a near exponential
growing of robotics, the expected market size in 2025
of robots in the home environment will be twice the
size as in classic manufacturing industry 1. For mo-
bile robots the shift from organized, well-known en-
vironments to private homes is challenging. Besides
the requirements to the embodiment (hardware), the
perception system needs to cope with the less struc-
tured environment. While in the industrial field of
application the tasks e.g. localization and obstacle
avoidance can be solved with a 2D laser scanner, the
tasks in a home environment are more challenging
because of cluttered scenes, formless surfaces like
curtains, and protruding surfaces like table tops; in
short, the three-dimensional character has to be taken
into account.

To deal with this challenge, robots must be able
to perceive the surroundings accordingly. 3D sensors

1Source: Japan Robotics Association (www.jara.jp)

(stereo vision, structured light, TOF-cameras) pro-
vide us with the required (range) data. In comparison
to 2D laser scanners, 3D sensors supply robots with
high amounts of data, but the problem lies in this very
aspect: the processing of the whole data can be com-
putationally expensive, especially for high resolution
sensors. An idea to overcome this problem is the
concept of attention, inspired by nature where living
creatures face also the problem of high amounts of
sensory data and limited processing capacities. Us-
ing only the relevant aspects of the input reduces the
requirements to the brain. The same mechanism can
be applied to sensors for mobile robots.

In this paper we investigate how an attention
mechanism can benefit from additional 3D informa-
tion. The common approach of decomposing the in-
put data in different features and combining them
into a useful saliency map is extended. Additional
3D edge features derived from the range data are
used to incorporate information about object bound-
aries and transitions, so that the structure of the scene
effects the attention system. Input is provided by a
tilting laser scanner, which yields range as well as re-
flectivity (also known as reflectance) data in a single
3D scan pass. Both data modalities are transformed
into 2D images and fed into our visual attention sys-
tem. In the range and in the reflectivity image, the
system detects regions that are salient according to
intensity and orientations as well as regions that are
salient to jump and roof edges.

The rest of the paper is organized as follows: Sec-
tion 2 presents an overview of different attention ap-
proaches and 3D sensors. In Section 3 our attention
system based on 3D data is presented, and in Section
4 the beneficial influence of 3D edges is evaluated.



2. Related Work

This section is divided into two parts. The first
part gives an overview of visual attention systems;
the second part presents existing 3D sensors that
might provide input data to our attention system.

2.1. Visual Attention

Attention is defined as “the concentration of
awareness on some phenomenon to the exclusion of
other stimuli” 2, visual attention in computer vision
deals with modeling methods to focus on interesting
regions in scenes, and how to determine what is in-
teresting and not.

Most of the early research covers models for 2D
color images, e.g. Itti et al.([10]) consider the lo-
cal appearance of color, intensity and orientation.
A good overview of other attention models can be
found in Frintrop et al ([6]). Beside features based
only on 2D information, Frintrop et al. and Wolfe
([23]) give clues that these three are only a selection
of useful cues. The third dimension can be used as a
depth cue to guide and modulate the deployment of
attention. Depth data from various sensor modalities
has been used as input for attention systems: for ex-
ample Bjrkman and Eklundh [1] use hue and 3D size
on stereo camera data, Bruce and Tsotsos [2] com-
bine attention based on Gabor maps and spatial fre-
quencies from the left and right stereo camera input,
and Maki et al. [11] incorporate disparity and flow
information in their work. Frintrop et al. use orienta-
tion and intensity cues on depth as well as on reflec-
tivity data from a 3D laser scanner ([6]) and Ouer-
hani et al. use 3D cameras to integrate depth based
on conspicuity maps([14]).

The classic approach of combining single feature
maps to a saliency map does not take the task into
account, only simulates the pre-attentive, stimulus-
driven attention system. The counterpart to the
bottom-up approach is to incorporate the task in a
top-down manner. Wolfes model considers informa-
tion of the goal by selecting features with high dif-
ferences between the target and the rest of the scene;
only features that are useful for the task are consid-
ered.

Top-down information can be incorporated in var-
ious ways: searching for salient regions can be
restricted to certain regions, e.g., the street when

2Encyclopaedia Britannica. Encyclopaedia Britannica On-
line. Encyclopaedia Britannica Inc., 2011. Web. 13 Dec. 2011.
http://www.britannica.com

searching for persons, but ignore the sky ([22]). The
gist (semantic category) of a scene such as office
scene or street guides eye movements ([21]) and can
be computed from the feature channels ([19]). If
prior knowledge about a target is to be used to per-
form visual search, the target similarity of the most
salient regions in bottom-up saliency maps can be
investigated ([15]). More advanced approaches are
biasing the feature types ([13]) or tuning conspicu-
ity maps ([7]). Other approaches inhibit target irrel-
evant regions ([4]) or excite target-relevant regions
or use both ([12]). In order to imitate human-like
behaviour, bottom-up saliency (uniqueness) and top-
down saliency (target relevance) have to be fused
([16]).

2.2. Range Sensors

Today there are four different sensor systems
available which provide range data: inspired by the
human vision, stereo vision systems are working on
the same principle as the human depth perception;
images from two cameras from different viewpoints
of the same scene are combined into a disparity map,
which represents the depth information. Due to its
passive sensing the system depends on the lighting
conditions in the environment.

In contrast to passive stereo vision systems, struc-
tured light based systems replace the second cam-
era by a projector that projects a known light pat-
tern. The depth information is calculated from the
distortion of this pattern due to the 3D structure of
the scene.

The time-of-flight cameras emit modulated light
and measure the time it takes for the reflected light
to return to the sensor. These systems are vulnerable
to background lighting and interference with other
sensors of the same kind.

In comparison to these three concepts, the tilting
laser scanner measures only one data point at a time;
a conventional 2D laser scanner is mounted on a tilt-
ing unit to introduce the third degree of freedom. Due
to the sequential measurement and the relatively slow
speed, the video frame rate is low compared to the
three other 3D sensor concepts.

Similar to the tilting laser scanner, Thilemann et
al. develop a 3D sensor system which uses also one
laser beam, but in contrast to the tilting laser scanner
the deflection of the beam is achieved by micromir-
rors instead of a rotating (macro) mirror and tilting
unit ([20]). The expected output of the sensor can be



Figure 1. Overview of the bottom-up attention system, organized in main stages (horizontal) and in channels (vertical)

adjusted, higher resolutions can be provided at lower
frame rate and vice versa.

With increasing resolution and frame rate of 3D
sensors the amount of sensory output raises, and with
it the computationally requirements to process the
data. Attention mechanism can be used in a prepro-
cessing step to overcome this problem.

3. Attention for Reflectivity and Range Im-
ages

The architecture of our bottom-up attention sys-
tem is inspired by Itti et al.’s attention model ([10]),
which decomposes the input image in different fea-
tures and combines them into a saliency map. Wolfe
[23] and Frintrop et al. [5] notice that beside Itti’s se-
lection of features (color, intensity, and orientation)
there are more cues which influence attention, one
of them is depth information. In our approach we
combine 2D features from the reflectivity image with
3D features (particularly jump and roof edges) from
the range image. The idea is to amplify saliency on
object boundaries and transitions, so that the scene
structure becomes more influentially. The input data
is provided by a tilting laser scanner, which yields
those reflectivity and range images.

Our system is shown in Figure 1 and is organized
into three stages:

• Extraction: extract feature maps at locations
over the input image

• Activation: form activation maps using the fea-
ture maps

• Combination: first combine activation maps
for each feature and then combine these into a
saliency map

The input is divided into similar processing chains
for the reflectivity and range image. Each processing
chain contains the stages mentioned before. The fol-
lowing channels (processing chains) are used in our
system:

• Intensity channel on reflectivity image

• Orientation channel on reflectivity image

• Intensity channel on range image

• Orientation channel on range image

• Jump edge channel

• Roof edge channel

The reflectivity image is decomposed into two dif-
ferent channels: the intensity channel and the orien-
tation channel. The first stage for the intensity chan-
nel is to extract the feature maps from the input im-
age. This step is done on different scales on a Gaus-
sian image pyramid (5x5 Gauss kernel and 4 scales,
each subsampled by selecting every second pixel ver-
tically and horizontally). In the intensity channel the
feature maps for each scale are equally to the input
reflectivity image on the corresponding scale.



The next stage is to get activation maps from
these feature maps. This is done with the use of
center-surround mechanisms which compute the in-
tensity differences between image regions and their
surroundings. The center c is given by a pixel in
the feature map. The surrounding s is calculated as
the average of the surrounding pixels for two differ-
ent sizes of surrounds. The value of the surround-
ing can be determined by averaging two convolutions
of the feature map with Gaussian kernels with dif-
ferent σ (σ represents the size of the surrounding).
The center-surround difference d = |c− s| is a mea-
sure for the intensity contrast in the specified region.
Three intensity feature maps from the scales [2 3 4]
yield to three activation maps in the intensity chan-
nel.

The combination of these three maps results in
one activation map for this channel. This step corre-
sponds to the first phase of the combination stage.

The second channel of the reflectivity image is the
orientation. To extract the feature maps, Gabor fil-
ters are used to detect bar-like feature of orientations
{0◦ 45◦ 90◦ 135◦} in different scales. The activation
and the combination is done similar to the previous
intensity channel. The four orientation maps from
from each scale [2 3 4] result into one activation map
for this orientation channel.

Similar to the reflectivity image the range image
is divided into channels, the first two channels are
equal to the channels of the reflectivity image.

Besides intensity and orientation, two edge chan-
nels are added:

Jump edges occur on object boundaries and ap-
pear in scenes where an object is occluded by another
object or itself. Discontinuities in the range image
represent jump edges and can be determined by the
gradient magnitude (using the Sobel approximation
to the derivative). Roof edges do not represent dis-
continuities in the range value, but discontinuities in
the direction of the surface normal vectors and ap-
pear for example, where two differently oriented sur-
face patches intersect. The normals are calculated
according to [17], and the maximum of the dot prod-
ucts (of the surface normals) of the horizontal and
vertical neighbouring pixels can be used to determine
the location of roof edges. Figure 2 shows both edge
feature maps.

The activation and the first phase of the combina-
tion is done similar to the other channels. The three

(a) (b)

Figure 2. Edge Feature Extraction (from Figure 6(a)): (a)
jump edges, (b) roof edges

jump edge feature maps (scales [2 3 4]) yield to one
activation map for the jump edge channel. The same
goes for the roof edges.

Finally, the six activation maps from each chan-
nel are combined to the saliency map. One common
approach is to sum up the activation maps after nor-
malizing each activation map (c.f. [6]). In addition
to this additive approach we propose a multiplica-
tive approach: the sum of the edge activation maps
is pixelwise multiplied with the sum of the rest of the
activation maps to inhibit regions without any edge
correspondence and exhibit regions corresponding to
object transitions and boundaries.

In the section 4 the different saliency maps are
evaluated.

4. Experiments

Common evaluations for attention systems are to
compare the output saliencies of different approaches
on the basis of example images, another evaluation
method is to use ground truth of eye fixations. Since
there are only data sets for saliency evaluations for
2D color images available, we use our recorded test
data with the generated ground truth for objects to
test the performance for the area of mobile robotics.

4.1. Data Acquisition

The test data was recorded with a tilting laser
scanner, we used a SICK LMS-100 which is mounted
on a tilt unit (SCHUNK PW70) (see Figure 3(a)).
The resolution of the test data is 360 × 500 with a
field of view of 90◦ × 62.5◦ (horizontal × vertical).

The test data contains two different sequences:

• a home environment with a robot crossing the
ground plane in front of the sensor (90 frames)

• the sensor is approaching a table with a cup on
it (80 frames)

For both scenes groundtruth data was generated by
marking the robot in the first sequence and the cup in



the second sequence (see Figure 3(b) and 3(c)). This
represents objects relevant for mobile robotics, es-
pecially the tasks of navigation (and obstacle avoid-
ance) and grasping objects.

(a) (b) (c)

Figure 3. (a) tilting laser scanner (b) and (c) groundtruth

4.2. Evaluation

For the evaluation of our attention system we con-
sidered two different perspectives:

• different combinations for our attention system

• our system in comparison to approaches men-
tioned in section 2

Figure 6 shows saliency maps from different com-
binations of our attention system: (a) shows the in-
put range image, (e) the input range image. In the
first row only combinations without edge channels
are plotted: (b) combination of intensity and orien-
tation channels of the reflectivity image, (c) intensity
and orientation of the range image, (d) intensity and
orientation from both images. In (i) the edge chan-
nel is presented, the additive combination of the edge
channel for (b)-(d) is shown in (f)-(h), the multiplica-
tive combination in (j)-(l).

The advantage of the edge channel is that the
saliency is amplified in regions where object bound-
aries occur, with the result that the saliency map
corresponds more to the actual structure of the scene.

A numerical evaluation is done with the ground
truth data from the two test sequences, true-positive
rates and false-positive rates are calculated based on
a threshold for the binarization of the saliency map.
(binarymap∧groundtruth) results in true positive,
(binarymap¬∧groundtruth) in false positive, and
so on. The resulting average (over all frames of the
sequence) ROC curves are shown in Figure 4 and 5.

In the first test sequence the reflectivity channels
increase the performance, which can be explained
that the object (robot) marked as ground truth has a
high contrast in the reflectivity image. In the sec-
ond sequence the object (cup) has much lower con-
trast to the surrounding, so that in this case the in-
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Figure 4. ROC-curve from test data sequence #1
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Figure 5. ROC-curve from test data sequence #2

fluence of the edge channels come into effect. Table
4.2 contains the area under ROC curve (AUC), higher
values indicates better performance. In the first se-
quence the additive combination of the edge channel
decreases the AUC more than the multiplicative com-
bination. In both sequences the values of the addi-
tive combination are lower than of the multiplicative
combination.

The ROC curves and the AUC confirm a higher
score for the multiplicative combination compared
to the additive. The attention system benefits from
the edge channels in sequences with low contrast in
the reflectivity image.

Figure 7 shows saliency maps from other works
for saliency calculation (Bruce and Tsotsos [3], Harel
et al. [8], Hou and Zhang [9], Itti et al. [10], Seo
and Milanfar [18],Zhang et al. [24]). Since those ap-
proaches are usually used on color images and our
test data does not include color information, we di-



channels and combination AUC #1 AUC #2
int/ori (refl.) 0.79964 0.73543
int/ori (range) 0.78842 0.76896
int/ori (refl. and range) 0.81989 0.75829
int/ori (refl). +edge 0.73571 0.77809
int/ori (range) +edge 0.72161 0.78723
int/ori (refl. and range) +edge 0.75410 0.77853
int/ori (refl.) *edge 0.79425 0.77951
int/ori (range) *edge 0.74798 0.79091
int/ori (refl. and range) *edge 0.77539 0.78189

Table 1. Area under ROC curve (AUC) for different chan-
nel combinations on both test sequences.

approaches AUC #1 AUC #2 runtime [s]
our approach 0.77539 0.78189 0.45
Bruce refl. [3] 0.82228 0.76673 8.22
Bruce range [3] 0.68382 0.81224 8.22
Harel refl. [8] 0.85148 0.76474 18.54
Harel range [8] 0.76592 0.77800 18.54
Hou refl. [9] 0.52519 0.53869 0.02
Hou range [9] 0.32546 0.34732 0.02
Itti refl. [10] 0.66255 0.76524 0.32
Itti range [10] 0.82373 0.68932 0.32
Seo refl. [18] 0.83189 0.75686 2.42
Seo range [18] 0.75458 0.78468 2.42
Zhang refl. [24] 0.80433 0.66407 2.35
Zhang range [24] 0.61619 0.72008 2.35

Table 2. Area under ROC curve (AUC) on both test se-
quences with different approaches (each with reflectivity
and range image as input)

vert the input data into range and reflectivity images.
The corresponding AUC and runtimes (MATLAB on
Intel Core(TM) Quad @ 2.4GHz) are presented in
table 4.2, e.g. Harel et al. and Bruce and Tsotsos
perform similar to our approach but need at least 20
times longer, Hou and Zhang’s approach is 40 per-
cent faster but lacks on the performance side.

The advantage of our system is a trade-off be-
tween runtime and performance.

5. Conclusion

In this paper we have presented a new approach of
combining 2D and 3D features for an attention sys-
tem.

Input data are provided by a tilting laser scanner,
which yields range and reflectivity images. The first
stage of our attention approach is the extraction of
feature maps from the input data. Additional to ori-
entation and intensity features, we incorporate jump
and roof edge features to increase the influence of

the scene structure on the saliency calculation. In the
second stage the feature maps result into single ac-
tivation maps for each feature, which are then com-
bined in the third stage into the final saliency map.

We have shown that our system benefits from the
additional edge features. In scenes with low contrast
in the reflectivity image the performance increases
significantly. In comparison to other attention
approaches our system is a good trade-off between
performance and runtime.

Further work will include the incorporation of
task-dependent top-down information and a real-time
implementation. The overall goal will be a flexi-
ble vision system that recognizes salient objects first,
guided by attentional mechanisms in real-time.
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