
17th Computer Vision Winter Workshop
Matej Kristan, Rok Mandeljc, Luka Čehovin (eds.)
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Abstract. In this paper we present a fast approach
to extracting features from range images. These fea-
tures are intended to serve as input to the perception
system of a domestic service robot. In the first step,
after initial noise filtering, a range image pyramid is
computed and used together with a measure for local
planarity to determine regions that require and allow
further smoothing. Mixed pixels at depth discontinu-
ities are identified. This is followed by extracting step
and roof edges. Planar patches are detected with a
focus on horizontal and vertical planar structures.
Finally, a ”label map” is created by assigning a la-
bel to each pixel indicating its membership to one of
the feature types. We show feature extraction results
of our approach on real range images recorded in
a home-like office environment using a tilting laser
range finder, and give examples for their use in typi-
cal service robotics tasks.

1. Introduction

In classic service robotics the focus lies on trans-
porting objects in controlled and well-structured en-
vironments like factories, hospitals or offices. A sim-
ple perception system is sufficient to provide data for
the tasks of the robot, namely self localisation and
obstacle avoidance. A popular sensor is the 2D laser
range finder scanning parallel to the ground because
the environment can be modelled by 2D grid or fea-
ture maps due to an abundance of unobstructed verti-
cal structures such as walls or the faces of file draw-
ers and closets. Processing the sensor data, for in-
stance 361 range measurements for one 180◦ scan,
requires only very little computational power to work
in real-time, which is a necessity since the robot is
moving in a dynamic environment.

In domestic service robotics the demands to the
perception system are higher in comparison. Home

environments are challenging since they are cluttered
and less structured. There are amorphous surfaces
like curtains or other home textiles, and protruding
surfaces such as table tops. The three-dimensional
nature of this environment can no longer be ne-
glected. To be useful for technically non-trained
users, the offered services must be more than just
safely navigating from A to B. The perception sys-
tem has to support grasping and object detection, for
instance. The latter also contributes to more natu-
ral human-robot interaction since it is closer to hu-
man perception: the user would rather like to call the
robot to ”the sofa in the living room” than to a loca-
tion ”x, y, θ”.

When changing over from 2D to 3D data (more
exactly: 2.5D), the demands to the computational
part of the perception system rise drastically due to
the increased amount and complexity of the data.
Nevertheless, the real-time requirement still stands.
Since mobile robots run on batteries and a long time
of autonomy is desired, the onboard computational
power cannot be increased arbitrarily. To achieve
real-time responsiveness despite this restriction, fast
segmentation algorithms are required.

In this paper we address range image segmenta-
tion under real-time constraints as well as detection
and removal of mixed pixels, outliers that occur at
discontinuities within the range image. The features
extracted in the course of our segmentation approach
are intended to be useful for various tasks of indoor
service robotics. Horizontal planar structures pro-
vide information for safe navigation and about sup-
port planes such as table tops. Vertical planar struc-
tures can be used for map building and self localisa-
tion, or represent doors. Step and roof edges define
object boundaries and the transition between object
and support plane or between object parts, which can
serve as additional information to object detection



and eventually grasp point computation.
The remainder of this paper is structured as fol-

lows: Section 2 gives an overview of related work.
Section 3 provides the motivation for the features we
have selected as target result and describes our ap-
proach in detail. Section 4 provides experimental re-
sults on data recorded with a tilting laser range finder.
Finally, Section 5 concludes with a summary and an
outlook.

2. Related Work

When compared to intensity or colour images,
which provide information about the surface proper-
ties of the objects observed by a sensor, range im-
ages encode the three-dimensional structure of the
observed scene. The purpose of range image seg-
mentation is to divide the image into features or re-
gions that are meaningful with respect to a given task.

Comparison of quality and performance of differ-
ent segmentation methods is difficult due to the lack
of sound experimental evaluation. An exception is
the field dealing specifically with the segmentation
of objects with planar faces, published in [8] together
with experimental data. A detailed overview of liter-
ature in that field is available in [4]. Segmentation
methods can be roughly divided into edge-based and
region-based approaches.

Edge-based methods are inspired by human vision
since humans have the principle that there is a dis-
continuity of some kind between two separable ob-
jects [17][12]. Edge pixels have a gradient assigned,
that is, magnitude and direction of the greatest lo-
cal change. Sappa and Devy [13] use an edge-based
segmentation technique that consists of two stages:
the first stage generates a binary edge map based
on scan line approximation that considers only two
orthogonal scan line directions. The second stage
links the edge points by applying a graph strategy. In
[1] Bellon and Silva present range image segmenta-
tion based on edge detection techniques with the aim
of better preserving the object topology and shape
in noisy range images. Their approach avoids fixed
thresholds. Han et al. [5] propose a jump-diffusion
method for segmenting a range image and its asso-
ciated reflectance image in a Bayesian framework.
Harati et al. [6] propose the metric ”bearing angle”,
which is the incidence angle between the measure-
ment beam and a surface. By thresholding the bear-
ing angle and its first derivative, step and roof edges
are detected. Since their target application is 3D in-

door SLAM they are rather interested in the remain-
ing planar patches and thus remove all edges.

Region-based methods group pixels into regions
using the criteria of proximity and homogeneity.
These methods achieve grouping either by splitting
the image into smaller regions [10], merging small
regions into larger ones [8], or splitting and merg-
ing until all criteria are maximally satisfied ([2][9]
[7]. In more recent work, Gotardo et al. [3] present
a robust estimator, derived from the RANSAC and
MSAC estimators, whose optimization process is ac-
celerated by a genetic algorithm. Their range im-
age segmentation algorithm is based on planar sur-
face extraction in preserving small regions and edge
locations when processing noisy images. Similarly,
Wang and Suter [15] propose a highly robust esti-
mator (Maximum Density Power Estimator), which
applies nonparametric density estimation and density
gradient estimation techniques in parametric estima-
tion (”model fitting”). According to the authors it
can tolerate more than 85% outliers. Weingarten et
al. [16] use probabilistic plane fitting to extract large
planar surfaces from range images as input to map-
ping the environment for mobile robotics.

Similarly to Bellon and Silva [1], we also make
use of standard image processing as much as possible
for edge detection. To increase robustness, various
methods are combined in a voting scheme, and also
the metric ”bearing angle” [6] is incorporated. The
contribution of this paper is the proposal of a process-
ing pipeline that addresses range image segmentation
in the context of robotics holistically and whose com-
putational complexity is linear in the number of pix-
els, capable of running in real-time.

3. Approach

In this section we discuss what features are ex-
tracted in the course of our segmentation approach
as well as their relevance in the context of domes-
tic service robotics. This is followed by a detailed
discussion of the individual processing steps of our
approach.

3.1. Target Features

The vertical axis is an important reference (direc-
tion of gravity). This information is incorporated into
the sensor data and associated processing algorithms
via the known geometry and kinematics of the setup
consisting of sensor and robot, and optionally via in-
clinometers.



In (manmade) indoor environments horizontal and
vertical planar structures are dominant; together they
also define the room structure. Horizontal planar
structures such as the ground, table tops or the seats
of chairs play the role of support planes on which
the robot moves and on which obstacles or objects
of interest are located. Vertical planar structures rep-
resent walls, doors, the faces of closets or the bod-
ies of objects. Especially walls define the boundaries
of the indoor environment (together with ground and
ceiling) and can serve as features for the robot’s self
localisation.

Step edges occur at object boundaries, more ex-
actly at the transition between foreground and back-
ground. We consider step edges as part of fore-
ground objects. Roof edges occur at the transition
between parts of objects or between object and sup-
port plane, and also at top rims and high-curvature
surfaces. Roof edges can be concave or convex.

3.2. Preprocessing

As preprocessing step a 3x3 median filter is ap-
plied to the range image I . This removes spurious
outliers and reduces noise. Especially the former
would otherwise affect neighbouring range measure-
ments in the course of optional, subsequent smooth-
ing. Due to the small kernel size edges are largely
kept intact and the computational effort is low.

It is expected that the input range images are ei-
ther dense, or, if they have holes, that they can be
made dense by applying a fast depth diffusion ap-
proach [14].

Depending on the remaining noise level of the
range image further smoothing steps might be nec-
essary, repeating median filtering or additionally ap-
plying Gaussian smoothing. In the latter case we use
a normalized 3x3 binomial kernel.

The final step of preprocessing is the generation of
a Gaussian range image pyramid (Figure 1). To do
so, the initial range image is convoluted with a nor-
malized 5x5 binomial filter followed by subsampling
the result by a factor two in each dimension. These
two steps are repeated on the resulting images. For
performance reasons we make use of the separabil-
ity of the filter kernel and directly incorporate sub-
sampling: a 1D horizontal kernel is applied to every
second pixel column of the range image. This is fol-
lowed by the application of the translated i.e. vertical
1D kernel to every second pixel row of the interme-
diary result.

Figure 1. Example of an image pyramid of a range image
showing a table scene with a robotic gripper. Subsampled
images were only created for as long as both dimensions
were multiples of two.

3.3. An Indicator for Local Planarity

We consider the nine range values ri+m,j+n (i
and j are the column and row indices) from any 3x3
neighbourhood of an approximately locally equally-
spaced range image. Tilting laser scanners, stereo
and time-of-flight cameras fulfil this requirement. If
these range values can be explained by the linear
equation

ri+m,j+n = kim+ kjn+ rij , m, n ε [−1; 1] (1)

then they are part of a (close to) planar patch (ki
and kj are constants). Please note that the coordinate
system defined by (m,n, r) is not exactly Euclidean
which can be neglected in pratice. If Equation 1
is perfectly satisfied, there is an interesting relation-
ship between gradient magnitude gij and the popula-
tion standard deviation σij of these values of the 3x3
neighbourhood around rij :√

2

3

gij
σij

= 1.0 (2)

The gradient magnitude (and direction θij) is cal-
culated using the Prewitt operator:

gij =
√
g2x,ij + g2y,ij , θij = arctan(

gy,ij
gx,ij

) (3)

gx,ij =
1

6
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 ∗ I (4)

gy,ij =
1
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and the standard deviation is calculated as

σij =

√√√√1

9

1∑
m=−1

1∑
n=−1

(ri+m,j+n − µij)2 (6)



Figure 2. Top: Ratio of the local gradient magnitudes and
the standard deviations. Bottom: Ratio thresholded by the
empirically found value 0.985. Black represents the value
0.0, white represents 1.0.

µij =
1

9

1∑
m=−1

1∑
n=−1

ri+m,j+n (7)

The special case that all nine values are equal and
as a result the standard deviation is zero must be in-
tercepted – the result is manually set to 1.0 since
Equation 1 is perfectly satisfied. In noisy regions, at
depth discontinuities (step edges) or in regions with
high curvature (roof edges) the result is smaller than
1.0.

Figure 2 shows the result of computing the ratio
from the image pyramid in Figure 1 (top) and thresh-
olding it (bottom). For planar patches that are viewed
by the sensor under an acute angle, the ratio is close
to 1.0, but for planar patches that are perpendicular to
the sensor’s viewing direction the impact of measure-
ment noise is clearly visible. At smaller resolutions
the influence of noise on planar patches disappears
while edges remain stable. Also, the curvature i.e.
the non-planarity of rounded objects becomes more
prominent at lower resolutions. The ratio at full reso-
lution and its behaviour across scales is used to deter-
mine what regions require and allow further smooth-
ing (planar but noisy). Even if noise remains, the
identified planar regions serve as good seed regions
for region growing.

3.4. Mixed Pixels

In range images (or equivalently: depth images)
from tilting laser scanners, time-of-flight cameras
and also stereovision, there are range measurements
at depth discontinuities that do not correspond to
any physical structure. These mixed pixels have val-
ues that lie somewhere between the valid foreground

Figure 3. 3D data computed of our initial range image.
At depth discontinuities occur mixed pixels (marked by
arrows, left) that must be removed (right).

Figure 4. Standard deviation for each pixel of the range
image within a 3x3 neighbourhood. Maximum deviation
was clipped to 0.05m for better visibility of low deviation
regions.

and background range measurements (Figure 3, left).
They are problematic because they seemingly con-
nect foreground and background points to one con-
tiguous object and thus have to be removed (Figure
3, right).

The first step in detecting mixed pixels is to find
depth discontinuities, that is, abrupt changes in the
values of neighbouring pixels of the range image.
But what extent of change is ”abrupt”? Clearly, this
depends on the measurement noise of the used sen-
sor. To determine the noise level, we use the standard
deviation of the range values for each pixel within a
3x3 neighbourhood that has already been computed
in the previous section. Figure 4 shows that the stan-
dard deviation is high at depth discontinuities. The
standard deviation computed for each pixel votes for
a bin of a histogram with a bin width of 0.1mm. We
determine the location of the (first) peak of the his-
togram and consider it as ”sigma” of the noise. Three
times this ”sigma” serves as threshold to determine
depth discontinuities within the standard deviation
image. While this threshold works well, there is a
problem when neighbouring pixels’ beams intersect
with planar structures at larger distances and at acute
angles. In such cases the local change in measured
range is well above the threshold and would thus reg-
ister as discontinuity.

In [6] the authors propose the metric ”bearing an-
gle” (Figure 5), which is the incidence angle βij,h
between the measurement beam and a surface. It is



Figure 5. Horizontal bearing angle βij,h (viewed from
above). rij,h and ri+1,j,h are two neighbouring range
measurements of the row j of the range image, enclos-
ing an angular increment φij,h. dij,h is the distance be-
tween the intersection points of the measurement beams
rij,h and ri+1,j,h with the surface.

computed as

βij,h = arccos(
rij,h − ri+1,j,hcos(φij,h)

dij,h
) (8)

dij,h =
√
r2ij,h + r2i+1,j,h − 2rij,hri+1,j,hcos(φij,h)

(9)
At real depth discontinuities this angle takes on

values close to 0◦ or 180◦, i.e. the beam would be
close to parallel to the (imaginary) surface. Although
Harati et al. use solely this metric, it is problematic at
short range i.e. objects close to the sensor, like in the
case of a table scene. Due to the in general small
angular increment φij,h between two neighbouring
measurement beams, rij,h and ri+1,j,h, and the re-
sulting small lateral distance between them at close
range, the bearing angle βij,h rather reflects the mea-
surement noise than the geometry of the scanned ob-
ject in such cases.

Since thresholding the standard deviation image
yields wrong depth discontinuities at greater dis-
tances and thresholding the bearing angle yields
wrong depth discontinuities at close distances, we
multiply both thresholded results, which leaves only
discontinuities where both methods agree (figure 6,
top). The threshold value for the bearing angle de-
pends on the sensor; for our setup we experimen-
tally found angles of smaller or equal 5◦ or greater
or equal 175◦1. According to the principle sketched

1The compuationally costly arccos can be skipped - we can
directly comapare against the cosine of the extremal angle.

Figure 6. Top: Sign of the thresholded horizontal and ver-
tical bearing angles. Bottom left: Mixed pixels (gray) that
are enclosed by step edges i.e. valid foreground pixels
(red) and valid background pixels (green). Bottom, right:
Range image without mixed pixels.

in Figure 5, mixed pixels are determined from both
bearing angle images and combined (Figure 6, bot-
tom left).

3.5. Step Edges

In our definition step edges are pixels of the range
image at depth discontinuities that (1) are valid pixels
and (2) belong to the foreground. Thus, they repre-
sent boundaries of foreground objects. Since the first
derivative of range images produces undesired strong
gradient magnitudes at planar areas that are further
away and that are intersected by the measurement
beams or visual lines of the sensor at acute angles,
we use the second derivative. The latter is sensitive
to measurement noise, thus, the range image is first
further smoothed, but only those areas for which our
previously determined indicator (Section 3.3) allows
it. In the next step, the filtered range image is convo-
luted with a 3x3 mask that has ”-8” as central element
and ones as 8-neighbours (3x3 8-neighbour Laplace
kernel). The result is an image that has positive val-
ues at the edges of foreground objects. At smooth
parts of the range image, there is only a small re-
sponse due to noise. This step is followed by the
detection of zero crossings, which we guide by the
local gradient directions that have already been com-
puted in a previous section (Equation 3). For each
pixel with a positive value of the second derivative
the two neighbours along the local gradient direction
are checked. If one of them is zero or negative, the
positive pixel is kept as edge pixel. Pixels with neg-
ative values of the second derivative are replaced by
zero and a histogram of the positive values is created.



Figure 7. Step edges.

As described in the previous section, the location of
the first peak is detected and three times its value is
used as threshold. Finally, single-standing pixels that
have no further pixel in its 8-neighbourhood are re-
moved since they stem from noise (Figure 7).

3.6. Roof Edges

For each range value rij of the previously
smoothed range image the associated 3D point or po-
sition vector ~rij = (xij yij zij)

T is computed us-
ing the sensor’s projection matrix. The coordinates
of each 3D point are stored in individual arrays of
the same size as the initial range image and at the
same array cell position as its associated range value.
In this way the initial neighbourhood is maintained.
For each 3D point we compute the surface normal
(Figure 8, left) based on its 3x3 neighbourhood:

~vij,1 = ~ri+1,j+1 − ~ri−1,j−1 (10)

~vij,2 = ~ri+1,j−1 − ~ri−1,j+1 (11)

~nij,1 = ~v1 × ~v2 (12)

~nij =
~nij,1
|~nij,1|

(13)

Surface normal computation is done for all images
of the pyramid. We decide if we use the surface nor-
mal from a higher resolution or propagate one from
the next-lower resolution based on the values of the
local planarity measure presented in Section 3.3. If
the value for a pixel at a higher resolution is below
the value of its associated pixel at the lower resolu-
tion, the surface normal is propagated. We start at
the lowest resolution and proceed upwards. A simi-
lar approach was proposed by Oehler et al. in [11],
however, with a focus on 3D point clouds.

In the next step the dot product is computed be-
tween horizontal and vertical pairs of neighbour-
ing surface normals. The resulting two images are
thresholded. We use 15◦ as minimum local change
of the angle between neighbouring normals to be ac-
cepted as roof edge. The roof edges from the thresh-

Figure 8. Left: Surface normals. Right: Roof edges.

olding results for the horizontal and vertical dot prod-
ucts are combined (Figure 8, right).

3.7. Planar Patches

The surface normals are multiplied (dot product)
with the unit vector of the vertical axis. As stated ear-
lier, the information about the vertical direction has
to be supplied from outside, either from the known
geometry of the setup or from inclination sensors.
The result of the dot product is thresholded. We al-
low a deviation of 10◦ from the vertical axis (hor-
izontal plane) for the surface normals of horizontal
(vertical) planar structures.

3.8. Label Map

Mixed pixels, step edges, roof edges, vertical and
horizontal planar patches have so far been stored in
individual maps that have the same size as the initial
range image from which they were derived. To each
pixel of the range image we assign a label according
to the local feature type. If more than one feature
type has activation at a pixel location, a prioritization
is applied: Mixed pixels, then step edges, roof edges,
vertical and finally horizontal planar patches. An ex-
ample for the co-occurrence of two features are roof
and step edges; the former also occur at depth dis-
continuities. The final result is a label map (Figure
10, right column).

4. Experimental Results

The following two subsections describe the sensor
used for data acquisition and the data itself as well as
practical results achieved on that test data.

4.1. Test Data Acquisition

A tilting 2D laser range finder (Figure 9, left)
built from a SICK LMS 100-10000 scanner and a
SCHUNK PW 70 rotary tilt unit was used to cap-
ture test data. Each captured frame provides 360x500
range and intensity measurements. With an angu-
lar resolution of 0.25◦ horizontally and 0.125◦ verti-
cally, the field of view is 90◦(H)x62.5◦(V). The sen-



Figure 9. Tilting laser range scanner for capturing the test
data.

Resolution Point count CPU time (ms)
360x500 180,000 83.3
360x250 90,000 41.5
250x160 40,000 20.5
180x125 22,500 10.1

Table 1. Computation times at different resolutions

sor was mounted onto a mobile robot at a height of
about 125cm with respect to the ground (Figure 9,
right). The top of the vertical field of view is parallel
to the ground plane, its bottom is tilted downwards
by 62.5◦. This configuration allows scanning table
scenes as well as detecting obstacle directly in front
of the robot and up to the robot’s height. One 3D
scan takes about 20 seconds. In order to simulate a
frame rate of about 10Hz, a stop-motion technique
was applied. That is, after each scan the robot and
dynamic objects in the scene were moved by a small
distance or angle according to the simulated speed
and frame rate. The data consists of 14 sequences
with a total of 2,136 frames. The recorded sequences
address robotic tasks such as obstacle detection, self
localisation, object detection, and grasping.

4.2. Results

Our approach was implemented in C++ and tested
on an Intel Core i5-430M notebook (2.24GHz, 4GB
RAM) running 32bit OpenSUSE Linux 11.2. No op-
timizations such as SSE or multi-threading have been
incorporating yet. The total amount of memory allo-
cated for various buffers and lookup tables is slightly
less than 3MB. The segmentation processing chain
was applied to the recorded sequences at four differ-
ent resolutions. Tab. 1 provides the respective aver-
age processing times per frame. The computational
complexity is O(n) with n being the number of pixels
of the range image.

Figure 10 shows range images and associated la-
bel maps for three tasks a domestic service robots
might have: grasping a cup on a table (top row),
opening or closing a door (mid row), and detect-

Figure 10. Range images (left column) and associated la-
bel maps for three scenes: objects on a table (top row),
door handle (middle row), obstacles on the ground (bot-
tom row). In each label map mixed pixels are black, step
and roof edges are blue and yellow, and horizontal and
vertical structures are green and red.

ing the closest obstacles within a relevant height re-
gion for obstacle avoidance (bottom row). Figure 11
shows applications of the extracted features in the
context of service robotics.

5. Conclusion

In this paper we have presented a fast approach
to segmentation of dense range images. In the first
part of our approach, after noise reduction and the
generation of a range image pyramid, mixed pixels
at depth discontinuities are detected and masked out.
The second part extracts step edges, roof edges as
well as planar horizontal and vertical structures. Fi-
nally, the pixels of the range images are labelled ac-
cording to the local feature type. We demonstrated
that our approach is capable of real-time processing
of range images on mainstream notebook hardware.

Since the test data used in this paper only stemmed
from a tilting laser range finder, future work will en-
compass adapting the approach to range images from
other sources, especially the recently introduced and
highly popular Kinect. Apart from an adaption to the
different sensor model, speedups will be necessary to
still achieve real-time performance on higher resolu-
tion data (VGA resolution). Finally, a thorough eval-
uation of our approach against state-of-the art meth-



Figure 11. Examples for applications of the extracted fea-
tures. Horizontal planar patches for obstacle detection
(floor) and a table scene (table top), vertical planar patches
(walls) for self localisation and edges reflecting transi-
tion between and boundaries of patches. Identifying ob-
ject candidates by removing the table plane, projecting the
resulting single-standing point clouds onto a grid in that
plane and clustering them.

ods but also within the intended robotic use cases has
to be conducted.
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