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Abstract – Human vision is the reference when designing 
perception systems for cognitive service robots, especially 
its ability to quickly identify task-relevant regions in a 
scene and to foveate on these regions. An adaptive 3D 
camera currently under development aims at mimicking 
these properties for endowing service robots with a higher 
level of perception and interaction capabilities with 
respect to everyday objects and environments. A scene is 
coarsely scanned and analyzed. Based on the result of 
analysis and the task, relevant regions within the scene are 
identified and data acquisition is concentrated on details of 
interest allowing for higher resolution 3D sampling of 
these details. To set the stage we first briefly describe the 
sensor hardware and focus then on the analysis of range 
images captured by the hardware. Two approaches – one 
based on saliency maps and the other on range image 
segmentation – and preliminary results are presented. 
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1. Introduction 
 

To be safe and useful, service robots must be able to 
perform a variety of tasks: obstacle avoidance and self- 
localization in dynamic, uncontrolled and cluttered 
environments, detecting and manipulating or transporting 
objects, and human-robot interaction. For each of these 
tasks the robot’s perception system needs to be supplied 
with appropriate sensor data. Depending on the task, the 
required measurement range, frame rate, resolution and 
field of view of the sensor data strongly varies. Due to the 
lack of adaptability, no single commercial sensor currently 
available is sufficient, which makes using combinations of 
such sensors necessary. Also, none of the current sensors 
directly supports higher-level perception. 

In [1] Thielemann et al. introduce a novel 3D camera 
that is currently being developed and that aims at 
addressing these challenges. It comprises micro- 
mechanical scanning elements for two-dimensional beam- 
steering of fast, laser-based single-point time-of-flight 
distance measurement, and software for fast scene analysis 
whose output is used in a feedback loop to control data 
acquisition by the hardware. The time-of-flight hardware 
emits a pulsed laser beam that is moved across the scene 
by controllable micro-mirrors to create raster-scan range 
images comparable to those of conventional tilting laser 
scanners, however, at camera-like frame rates. The use of 
novel quasistatic MEMS scanning mirrors [2, 3] enables 
the system to rapidly control the beam direction and thus 
adjusting the spatial and temporal resolution of the 

acquired data, that is, to foveate. Inspired by visual 
attention systems [4], features are extracted from range 
images and combined into saliency maps. The latter 
indicate the relative importance of each region in the range 
image. They are the basis for computing a new plan for the 
mirror trajectory, where the most salient parts of the range 
image (by binarisation of the saliency map i.e winner take 
all) are sampled at higher spatial density.  
 

2. Approach 
 

There are two kinds of features to derive saliency maps 
from. Firstly, dynamic features: changes (or motion) are 
detected and the sensor foveates on regions with the 
greatest change. To achieve that, a number of consecutive 
frames are considered; this aspect has been elaborated in 
[5]. And secondly, static features: each frame is treated as 
originating from a static scene, and based on the geometry 
of the scene and the task, regions of interest are 
determined. In classic attention systems according to Itti 
and Koch [6] saliency maps are computed as linear 
combinations of feature activation maps followed by a 
winner-take-all step to determine where to foveate. The 
features used are color, intensity and edge orientations. 
Instead of color the sensor under development provides 
range data, which encode the three-dimensional structure 
of the scene. The static features we use are step and roof 
edges, smooth and planar patches, where horizontal and 
vertical planar patches play a special role in the context of 
robotics. The direction of the vertical axis (direction of 
gravity) is derived from the known geometry and 
kinematics of the setup consisting of sensor and robot, and 
optionally via inclinometers. 

Horizontal planar structures such as the ground or table 
tops play the role of support planes on which the robot 
moves and on which obstacles or objects are located. 
Vertical planar structures originate from walls, the faces 
of closets or the bodies of objects. Especially walls define 
the boundaries of the indoor environment and serve as 
features for the robot’s self-localization. Step edges occur 
at object boundaries, at the transition between foreground 
and background. We consider step edges as part of fore- 
ground objects. Roof edges occur at the transition between 
parts of objects or between object and support plane 
(concave), and also at top rims (convex) and high- 
curvature surfaces. 

Before extracting static features, mixed pixels at range 
discontinuities are detected and removed (Fig. 1). For that 
we adapt the bearing angle proposed by Harati et al. [7]: 
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accepted if the local standard deviation within a 3x3 
neighborhood of the range values lies above the noise level. 
This is followed by single outlier and noise reduction 
(median, Gauss). Using a second order derivative on the 
preprocessed range image, and histograms, step and roof 
edges are determined. The remaining pixels of the image 
either belong to planar or at least smooth surface patches. 
Planar patches are determined via split-and-merge based 
region growing. Figure 2, top row, shows range images of 
three scenes and the mid row shows their labeling based on 
the extracted features. 

We compute saliency maps (Fig. 2, bottom row) in the 
fashion of Itti and Koch [6] from step and roof edges. 
Instead of using only linear combinations, also products of 
feature activation maps or range and height maps serve to 
incorporate constraints or biases. Task-dependent configu- 
rations select the features and their combination. The most 
salient region decides where to foveate. By inhibition of 
return the less salient regions are successively visited, too. 
If too much or nothing of the scene is salient, the attention 
system underperforms and no foveation is done. 

Instead of using saliency maps, a more “targeted” 
approach based on “classic” scene segmentation is 
investigated, too. In the real world, a robot interacts with 
objects. Such objects are located on horizontal or vertical 
support planes (e.g. cup on table or handle on door). Thus, 
possible support planes are searched in the labeled range 
image and removed, and object candidates are determined 
in the remaining data. This yields a “binarized” saliency 
map, where all object candidates are (equally) salient. The 
sequence of foveating on the object candidates can be 
either random or derived from the task, e.g. closest object 
first in the case of grasping or obstacle avoidance. 
 

3. Preliminary Results and Outlook 
 

As sensor hardware and software are being developed 
in parallel, test data was generated using a conventional 
tilting laser scanner (SICK LMS100 mounted onto a rotary 
axis). 14 sequences with a total of over 2,000 scans were 
taken in a home-like office environment at a resolution of 
360x250 pixels, covering a field of view of 90°(H)x60°(V). 
The software (C++) was tested on (one core of) an Intel 
Core i5-430M notebook. The average runtime is about 
46ms per frame. Preliminary results for labeled range 
images and saliency maps based on the extracted features 
are shown in Fig. 2. 

One of the main aspects currently under investigation is 
how to formulate and incorporate (high-level) task know- 
ledge, e.g. in the form of suitable constraints. Furthermore, 
improvement of the extracted features’ quality and 
combination as well as speedups will be addressed. 
 

     
 

Fig. 1.  Removal of mixed pixels 

 

Fig. 2.  Top row: Range images: cup on table, door 
handle, obstacle on floor. Mid row: Labeled 
range images. Green and red: horizontal and 
vertical planar patches, blue: step edges, yellow: 
roof edges. Bottom row: Saliency maps 
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