

D6.2 - Project Dissemination Plan

Project number:	248623
-----------------	--------

TACO Project acronym:

Project title: Three-dimensional Adaptive Camera

with **O**bject Detection and Foveation

February 1st, 2010 Start date of the project:

36 months **Duration:**

Deliverable type: Report

Deliverable reference number: 248623 / D6.2 / 1.0

Deliverable title: Project Dissemination Plan

WP contributing to the deliverable: All WPs

Due date: July 31, 2010 (M6)

Actual submission date: July 30, 2010

Responsible organisation: TEC

Authors: Tanja Scheliessnig; Hannes Hannig;

Ursula Polessnig; Stefanie Oberlojer

Abstract: The following document gives an

> overview of the dissemination activities planned for the TACO project. It describes the dissemination strategy as well as the actual events and activities

carried out by the partners.

Keywords: Dissemination, Strategy, Activities

Dissemination level: Public

Revision: 1.0

Instrument: STREP

ICT Thematic Priority:

Table of Contents

1	Introduction	3
2	Dissemination strategy	4
3 3 3 3	Planned dissemination of knowledge Contribution of each partner Description of planned dissemination activities 2.1 Active participation in conferences and workshops 2.2 Passive participation in conferences and workshops 2.3 Scientific articles and publications 2.4 Courses, talks organised 2.5 Web-sites 2.6 Press releases, newsletters 2.7 Other Contributions to standards	5 8 12 .13 .14 .15 .16
4	Cooperation with external organisations	.20
5 5.1 5.2	Participation in projects	.21 .21
6	List of Abbreviations	.22
Table Table	t of Tables 1: Type of planned Dissemination Activities	.12
	23: Summary of passively participated conferences and workshops	
	e 4: Summary of scientific articles, publications and presentationse 5: Summary of courses organised	
	e 6: Summary of relevant web-sites	
	27: Summary of press releases, newsletters	
	8: Summary of other dissemination activities	
	9: Cooperation with external organisations	
Table	e 10: Participation in other EC projects	.21
Table	e 11: Participation in national projects	.21
Lis	t of Figures	
Figur	e 1: Website of the TACO Project	.16
	e 2: TACO Logo	
Figur	e 3: TACO Folder	10

1 Introduction

The purpose of dissemination is to make TACO a successful and sustainable project by raising the awareness and publicity of the TACO project as well as its outcome. In this context, the target groups for external dissemination activities are on the one hand the general public and on the other hand potential business partners as well as specific scientific experts. Further target audiences are public institutions like governmental and European audiences.

In order to reach the particular awareness level intended, the **partners have to continuously work in the field of dissemination and public relations**. To support them as well as to provide them with a graphical identity within the consortium, the partners have to be provided with templates (for presentations and reporting) and various communication materials (web site, fact sheet, press release etc.).

The purpose of this plan is to collect information on the dissemination activities already completed or planned during the 36 months run time of the TACO project. It contains a plan for already carried out and prospectively upcoming activities based on a form, collected from each partner; it describes the dissemination channels to be used and the dissemination material to be produced and indicates their schedule. So, the dissemination plan gives an overview of the various activities and enables their coordination. So this dissemination plan can be regarded a guideline and will be supplemented in the course of the project duration.

The dissemination activities of the TACO project have been arranged into a logical sequence of various activities, which will be described in the following "Dissemination strategy" section. The real planned activities will follow later in the second section "Planned dissemination of knowledge".

Additional dissemination activities will be organised when the partners have prepared more detailed plans for their work. Invitations to contribute to both publications and conferences are expected as the project receives more attention throughout Europe and the rest of the world. These activities will be reported during the periodic reporting after the end of each project period.

However, as a first step, the appropriate dissemination strategy will be described hereafter.

TACO Deliverable D6.2 3/22

2 Dissemination strategy

The dissemination strategy of the TACO project is made up of two consecutive phases, which are described in more detail below.

During the **awareness-oriented phase,** the goal is to raise public awareness about the project and the problems it aims to tackle.

The **result-oriented phase**, as the second phase, aims to promote the results of the project, so that potential interested parties (i.e. vendors or integrators) may get to know the achievements of TACO and their benefits.

The two phases of dissemination require different methods and activities to be undertaken in order to achieve their goals.

Awareness-oriented phase

During this phase of the dissemination, tasks involve the setting up of basic marketing material and awareness-raising presentations at different related events. Thus, the main activities will be the following:

- Setting up a common project design, such as the TACO logo, templates for documents and presentations.
- Creating and maintaining the project website which will describe the challenges and goals of the project and will present the project members.
- Designing the project information material (such as a leaflet and an introductory off-the-shelf presentation), which can be distributed electronically later on without investing greater efforts.
- Giving introductory presentations at conferences and workshops about the challenges and goals of TACO in order to raise awareness among scientific and industrial stakeholders and to establish the basic brand name of TACO.

Result-oriented phase

During this dissemination phase, results of the TACO project will be published to promote these to stakeholders in the area of robotics. The planned activities are:

- Display and promote public deliverables and news for viewing and downloading on the project website in order to show the aliveness and progress of the project and to keep interested parties up-to-date.
- Presentations at international conferences and workshops introducing the theoretical results of the TACO project. These presentations will still be research-oriented.
- High-level scientific articles will be submitted to scientific conferences

The TACO consortium will publish and disseminate press releases after having reached important milestones of the project. These press releases will be circulated to representatives of the international press in the field of robotics.

TACO Deliverable D6.2 4/22

3 Planned dissemination of knowledge

During the TACO project life-time, the project partners will promote and encourage research on the TACO topic, targeting European and international companies and research centres, as well as creating interest in the general public.

The following overview summarises all planned dissemination activities that have been carried out or which are planned to take place in the future.

Planned Dissemination Activities:

Access through events: Innovation created by the TACO project will give all partners an opportunity to submit various papers that will be presented at international conferences and meetings and also be submitted to international journals. Promotion through international exhibitions, colloquia and professional conferences and workshops is planed, e.g.:

- SPIE Photonic West Symposium and Exhibit (San Jose, USA),
- SPIE Photonics Europe Symposium and Exhibit (Strasbourg, France),
- Transducers, Eurosensors, IEEE MEMS, IEEE/LEOS Optical MEMS, IEEE/ASME,
- Journal of Micro-Electro-Mechanical Systems: Micromechanics, microdynamical systems,
- IOP, Journal of Micromechanics and Microengineering: Covers all aspects of microelectomechanical structures, devices and systems, as well as micromechanics and micromechatronics.
- 3DIMPVT Conference: 3D Imaging, Modelling, Processing, Visualization and Transmission (Hangzhou, China)
- ICRA IEEE International Conference on Robotics and Automation (Shanghai, China)

SPIE, Journal of Micro/Nanolithography, MEMS and MOEMS: Development of lithographic, fabrication, packaging and integration technologies for microopto-electro-mechnical (MEMS and MOEMS), and photonics industries.

Elsevier, Sensors and Actuators A: Focuses on the research and development of solid-state devices for transducing physical signals.

An overview of the potential dissemination contributions of the project partners is given below:

3.1 Contribution of each partner

An overview of the potential dissemination activities of the project partners is given below:

TEC

TEC will provide the TACO-project IT-infrastructure – more precisely the whole set of tools which will foster the project cooperation, communication and dissemination, whereby the project website will serve as the most versatile external information and communication tool for a worldwide audience. In addition TEC will elaborate a TACO-project leaflet as well as a press release together with the other partners. Furthermore we intend to widely disseminate the TACO-project ideas and its results at various conferences and workshops.

OTL

In terms of dissemination, papers will be submitted on the results of the testing to suitable conferences and journals. The results and the project will also be discussed with suitable contacts in both industrial and academic fields.

TACO Deliverable D6.2 5/22

TUW

Main dissemination is scientific through conferences (e.g., ICRA, IROS, CogSys, SciCog, ICVS, ISVC, ECCV) and journal publications (e.g., MVA, IVC, CVIU).

FHG

- Conferences and Publications: Research results will be submitted to scientific conferences and journals.
- We plan to present the results related to the MOEMS technology at the following scientific conferences: SPIE Photonic West Symposium and Exhibit (San Jose, USA), SPIE Photonics Europe Symposium and Exhibit (Strasbourg, France), Transducers, Eurosensors, IEEE MEMS, IEEE/LEOS Optical MEMS
 - IEEE/ASME, Journal of Micro-Electro-Mechanical Systems: Micromechanics, microdynamical systems, microfabrication technologies useful for MEMS, modelling and design issues for MEMS, MEMS characterization and reliability.
 - IOP, Journal of Micromechanics and Microengineering: Covers all aspects of microelectomechanical structures, devices and systems, as well as micromechanics and micromechatronics.
 - SPIE, Journal of Micro/Nanolithography, MEMS and MOEMS: Development of lithographic, fabrication, packaging and integration technologies for microopto-electro-mechnical (MEMS and MOEMS), and photonics industries.
 - o Elsevier, Sensors and Actuators A: Focuses on the research and development of solid-statt devices for transducing physical signals.

SINTEF

SINTEF will disseminate project results through publishing project information on the company web site, scientific articles relating to research within 3D foveation algorithms and communicating the project's concept and results to new and existing customers. We plan to publish scientific papers and hold presentations at top, scientific symposiums including CVPR (IEEE Conference on Computer Vision and Pattern Recognition) and 3DIMPVT (3D Imaging, Modelling, Processing, Visualization and Transmission). Project results will further be exploited in current and future research projects undertaken by SINTEF.

CTR

CTR will present results of the TACO project at different conferences and scientific workshops with relevance to MOEMS based sensor devices; in particular, it is planned to participate at SPIE Photonics West, covering the latest enabling technologies and applications for micro- and nanofabrication and Photonics Europe, an appropriate European conference of SPIE with one focus on Micro/Nano Technologies Metamaterials, Devices, MEMS, MOEMS, Nanometrology. CTR will present results of the TACO project in line with the planned presence on international fairs with topics on Microtechnology and sensors.

Exploitation

Next to the dissemination of project results, exploitation of the TACO achievements is of crucial importance. We differentiate between public exploitation, not directly interested in commercial revenue focusing on benefits at the level of the society, and business exploitation with clear commercial motives.

The main stakeholders in public exploitation are the research institutes of TACO. The research results will be brought back into the scientific world and channelled back to other research and development projects in the robotics domain allowing cross-fertilization.

By updating educational material based on the new results, young generations of European engineers and developers will be kept close to the state-of-the-art.

The exploitation activities are the basis for exploiting the results concerning the following aspects:

TACO Deliverable D6.2 6/22

- fund the optimisation of the breadboard e.g. in terms of mass, size, manufacturing aspects, costs
- strengthen the market position of industrial partners (addressing new markets or expansion of product portfolio with competitive advantage, comparatively short time-to-market)
- fund the development of application-specific versions (e.g. indoor / outdoor)
- generate revenue through licensing fees from manufacturers
- leverage for future research and industrial projects

The exploitation phase is specifically targeted at potential clients of the TACO technology, i.e. at integrators and developers who could be interested in harvesting TACO functionality. Specific activities of this phase include:

- Publishing of the TACO system technology and TACO use examples in order to lay the foundation of potential commercial projects.
- Participation at robotic-oriented exhibitions, fairs and workshops, where the results of the project can be presented to business stakeholders and contacts for potential commercial projects can be built.
- Individualised demonstrations to interested stakeholders during the negotiation of business projects.

The exploitation of the project results is clearly defined in the objectives of TACO. As the project consortium consists of major European players in both science and industry the usage of the results will be exploited in both the science and commercial sector. The main exploitation will be through each partner's own organisation.

TEC:

Experience gained will be funnelled into our industrial services on requirement engineering. As an emerging SME, the reputation gained from the project will positively influence our future acquisition activities. We further provide workflow based management support systems for cooperative research efforts on national and European level. Project experience will trigger improvements of TEC's "Trusted knowledge Suite". Any novelties introduced will elevate the market position of this IT tool.

SHADOW:

Shadow is developing advanced robotic technologies based around manipulation (see e.g. FP7 Project HANDLE) and is keen to bring high-grade 3-d vision technologies to bear in this area. Shadow will be looking at ways to integrate the TACO sensing technologies into their existing product developments, as well as reaching out to current and new partners to explore routes to market for the TACO sensing system.

OTL:

Given a successful outcome of the TACO project OTL will integrate TACO systems into their own products where suitable, offer the solution to clients wherever benefits could be seen and pursue the supply, sale and integration of the TACO system itself.

TUW:

In terms of exploitation our main strategy is to exploit the gained knowledge to stay at the forefront of vision research for robotics in Europe and to exploit specific results for spin offs.

FHG:

The results of the TACO project will be published in relevant scientific and technical journals as well as via Internet. Furthermore the results will be presented on several conferences linked to technology and application of MOEMS devices. In agreement and cooperation with our partners first of all SINTEF, IPM and CTR the results (e.g. 3D sensing system) will be presented on international fairs (e.g. Photonics West, MEMS/Micromachining (Tokio), Laser).

TACO Deliverable D6.2 7/22

SINTEF:

The experience and the knowledge obtained from TACO are expected to generate several spin-off projects within 3D analysis, robot vision and 3D machine vision for SINTEF. The algorithms developed in TACO will be implemented in toolboxes and libraries which will form a base for further research and function as important building blocks when solving complex problems for our customers in the future.

3.2 Description of planned dissemination activities

The dissemination activities of the TACO consortium that are planned until this point are collected below.

Instrument	Description	Target / Markets
Publications, Presentations	scientific journals and Conferences	scientific community
Publications, Presentations	user-oriented Journals and Conferences	potential users, system integrators and manufacturers
Breadboard	at Exhibitions and Tradeshows	potential users, system integrators and manufacturers
Product sheet	Presentation of specifications, results and competencies	handout for exhibitions and tradeshows
Direct acquisition	direct communication with selected target customers	acquisition of system, acquisition of application-specific tailoring
Articles	press releases, interviews	short efficient presentation to attract public and media attention
Short demonstration film	support for presentations, exhibitions and tradeshows	to attract public and media attention, potential users, system integrators and manufacturers
EUCognition	Presentation of specifications, results and competencies	European research and industrial community within cognitive robotics
EuRobotics	Presentation of specifications, results and competencies	European research and industrial community within cognitive robotics

Table 1: Type of planned Dissemination Activities

3.2.1 Active participation in conferences and workshops

Active participation in conferences and workshops is defined: The participation in conferences and workshops is considered active if the TACO project partner is in the role of a speaker, presenter or moderator.

Name of the conference, official website	Date	Location (city, country)	Type and size of the audience	Topic and goal of the event	Relevance to TACO (Partners involved)
ICT2010	27-29.09.2010	Brussels, Belgium	International	Presenting Commission ICT work	Shadow will display their involvement in several projects and the on-going interactions (SHADOW)
SAB2010	2428.08. 2010	Paris, France	International , 120 participants	Smart sensors	Presenting the TACO sensor concept (SINTEF) IPMS: Co-author of

TACO Deliverable D6.2 8/22

Name of the conference, official website	Date	Location (city, country)	Type and size of the audience	Topic and goal of the event	Relevance to TACO (Partners involved)
Conference	22	San	International	Optical	the submitted paper Oral presentation
MEMS & Min. Systems at SPIE Photonics West	27.01.2011	Francisco , USA	THO HOLL	MEMS, quasi-static 1D-scanner	and conference paper (IPMS)
Conference MEMS & Min. Systems at SPIE Photonics West	22 27.01.2011	San Francisco , USA	International	Optical MEMS integrated piezo- resistive position sensor for MEMS scanners	Oral presentation and conference paper (IPMS)
ICRA – International Conference on Robotics and Automation	09 13.05.2011	Shanghai , China	International , 2000 researchers	Top robotics conference	Present first results (TUW, SHADOW, OTL, SINTEF)
Conference on Computer Vision and Pattern Recognition (CVPR)	20 25.06.2011	Colorado Springs, USA	International	3D foveation / saliency sensors and algorithms	Arrange a workshop on 3D foveation (SINTEF)
IEEE / LEOS, conf. OMEMS & Nanophotonics	08.2011	Istanbul, Turkey	International	Optical MEMS, IPMS: properties & control of quasi-static 1D scanner	Oral presentation and conference paper (IPMS)
IROS – Intelligent Robots and systems Conference	10. 2011	San Francisco , USA	International , 1800 researchers	Top robotics conference	Present intermediary results (TUW)
Austrochip 2011	10. 2011	Austria	International	Microelectron ics	Presentation of results (CTR)
SPIE Photonics West 2011	25 27.11.2011	San Francisco , USA	International	Photonics conference	Presentation of results (CTR)
3DIMPVT	16 20.05.2011	Hangzho u, China	International	Top 3D image processing conference	Oral presentation and conference paper (SINTEF)
ICRA – International Conference on Robotics and Automation	14 19.05.2012	Minneapo lis, USA	International , 2100 researchers	Top robotics conference	Present intermediary results (TUW, SHADOW, OTL, SINTEF)
International Symposium on Robotics and Intelligent Sensors (IRIS	03.2012	Nagoya, Japan	International	Technical forum for development and application of	Oral presentation and conference paper (FHG-IPM)

TACO Deliverable D6.2 9/22

Name of the	Date	Location	Type and	Topic and	Relevance to
conference,		(city,	size of the	goal of the	TACO (Partners
official web-		country)	audience	event	involved)
site 2012) IRIS 2010:				intelligent sensors in	
http://ns1.ohka.c s.is.nagoya-				robotics	
u.ac.jp/~iris_ad min/index.html SPAR 2012	03.2012	Houston/	International	3D laser	Oral presentation
SPAR 2010: http://www.igi.eu /event- reader/events/s par- 2010.html?mont h=201202	03.2012	Texas, USA	, 750 attendees	scanning, new data capture and process. Technologies for 3D surveying and dimensional control	and conference paper (FHG-IPM)
Sensor + Test 2012 Sensor + Test 2010: http://www.sens or-test.de/	06.2012	Nürnberg ;Germany	International , 509 exhibitors, 7400 visitors, 16,000m ² (2010)	Leading forum for sensorics, measuring and testing technologies worldwide	Booth, presentation of sensor (FHG- IPM)
IEEE International Workshop on Safety, Security & Rescue Robotics (SSRR 2012) SSRR 2010: http://robotics.ja cobs- university.de/SS RR2010/	11.2012	Denver, USA	International	Robots' overall design and crucial components, e.g., for advanced locomotion, and intelligent onboard functionalities	Oral presentation and conference paper (FGH-IPM)
IEEE / LEOS, conf. OMEMS & Nanophotonics	08.2012	USA, location still to be anncd.	International	Optical MEMS, IPMS: MEMS components for adaptive TOF sensor	Oral presentation and conference paper (IPMS)
Symposium on Fusion Technology (SOFT)	09.2012	Will be anncd. only in 09/10	International , 600-700 delegates	Fusion technology conference	Presentation of experimental results applying TACO system to a simulated fusion scenario (OTL)
IROS – Intelligent Robots and systems conference	10.2012	Portugal	International , 1800 researchers	Top robotics conference	Present final results (TUW)
Conf. VDE Mikrosystemtec hnik	10.2012	Berlin, Germany	National	Micro system technology	Oral presentation and conference paper (IPMS)
Vision 2012	11.2012	Stuttgart,	International	World's most	Booth, presentation

TACO Deliverable D6.2 10/22

Name of the conference, official website	Date	Location (city, country)	Type and size of the audience	Topic and goal of the event	Relevance to TACO (Partners involved)
Vision 2010: http://www.event seye.com/fairs/f- vision-2817- 1.html		Germany	, 292 exhibitors, 5700 visitors, 21000 m ² (2009)	important trade fair for machine vision	of sensor (FHG-IPM)
International Conference on Control, Automation, Robotics and Vision (ICARCV 2012) ICARCV 2010: http://www.icarc v.org/2010/	12.2012	Asia	International	Robotics perception systems; image/video analysis; feature extraction, grouping and segmentation ; scene analysis; pattern recognition	Oral presentation and conference paper (FHG-IPM)
SPIE Photonics West 2012	2012	San Francisco , USA	International	Photonics conference; Optical MEMS, 2D- quasistatic MEMS vector scanner	Present final results (CTR) IPMS: oral presentation and conference paper
SPIE Photonics Europe	2012	Brussels, Belgium	International	Photonics and microtechnol ogy	Presentation of results (CTR)
3D-PVT	2012	Still to be anncd.	International	capture, represen- tation, storage, transmission, processing, and visualization of 3D geometric and photometric models and their use	SINTEF, TUW
Conf. IEEE MEMS & Nanophotonics	01.2013	East Asia, location still to be anncd.	International	MEMS, IPMS: synchronized vector scanning of large aperture MEMS scanners	Oral presentation and conference paper (IPMS)
IEEE International Conference on Robotics and	04.2013	Karlsruhe , Germany	International , 2200 researchers	All areas of robotics and automation	Present final results (TUW, SHADOW, OTL, SINTEF) Oral presentation

TACO Deliverable D6.2 11/22

Name of the conference, official website	Date	Location (city, country)	Type and size of the audience	Topic and goal of the event	Relevance to TACO (Partners involved)
Automation (ICRA2013) ICRA 2011: http://2011.ieee- icra.org					and conference paper (FHG-IPM)
SPIE Photonics West 2013	2013	San Francisco , USA	International	Photonics conference	Present final results (CTR)

Table 2: Summary of actively participated conferences and workshops

3.2.2 Passive participation in conferences and workshops

Name of the conference, official web-site	Date	Location (city, country)	Type and size of audience	Topic and goal of the event	Role of partner, relevance to TACO, (Partners involved)
RSS 2010	27 30.06.2010	Zaragoza , Spain	International	Manipulation workshop	SHADOW
CVPR 2010	13 18.06.2010	San Francisco , USA	International	3D video analysis, saliency	SINTEF
3D-PVT	18 20.5.2010	Paris, France	International	3D data analysis and acquisition	SINTEF
AMA workshop on integrated piezo-resistive silicon sensors	22.06.2010	Darmstad t, Germany	National	State of the art of silicon based piezo resistive sensors	IPMS (input required for MEMS design of integrated position sensors realized in WP03)
Symposium on Fusion Technology (SOFT)	09.2012	Will be anncd. only in 09/10	International , 600-700 delegates	Fusion technology conference	Promotion of fusion related TACO project results on OTL's conference stand (OTL)

Table 3: Summary of passively participated conferences and workshops

TACO Deliverable D6.2 12/22

3.2.3 Scientific articles and publications

Author(s); Date	Title	Journal title, volume, issue, page numbers	Туре	Topic, Connection to
				TACO (Partners involved)
Jens T. Thielemann, Thilo Sandner, Stefan Schwarzer, Ugo Cupcic, Henrik Schumann- Olsen, Trine Kirkhus	TACO: A Three- dimensional Camera with Object Detection and Foveation	Smart Sensors Workshop @ SAB2010: http://smartsensors. webnode.com/	International	A generic presentation of the concept behind TACO, summarized in 4 pages.
A. Tortschanoff et al. (2011)	"Phaselocked driving of MEMS based Lissajous scanners" (tentative)	e.g. Applied Optics	International	Scanner concept, design and intermediate results (CTR)
Th. Sandner, A. Tortschanoff et al. (2011)	"Synchronized driving of MEMS scanner arrays" (tentative)	Proc. SPIE	International	Driver electronics (CTR, IPMS)
M. Lenzhofer et al. (2011)	"Phase locked loop driver for MEMS mirror synchronization" (tentative)	Proc. SPIE (Smart Sensors, Actuators and MEMS)	International	Driver electronics (CTR)
A. Tortschanoff et.al (2013)	"3D sensors, basics and details" (tentative)	e.g. Sensors and Actuators	International	Scanner + drivers + synchronization, final results
SINTEF, TUW	Foveation	e.g. PAMI/CVIU	International	System presentation with special focus on final results of 3D foveation algorithms
Thilo Sandner, Michael Wildenhain, Thomas Grasshoff, Stefan Schwarzer	Synchronized large aperture scanner array for MEMS based LIDAR systems (working title)	SPIE-JM3: Journal of Micro/Nanolithography, MEMS, and MOEMS (invited for publishing in 2010)	international	IPMS; resonant 1D-MEMS scanners for LIDAR systems IPM: in terms of phase based distance measurement
Thilo Sandner, Thomas Grasshoff, Harald Schenk	Design, characteristics and limits of comb driven resonant micro scanning mirrors	JMEMS or Appl. Optics (planed for 2011)	international	IPMS; characteristics and limits of resonant MEMS scanners
Thilo Sandner, Thomas Grasshoff, Harald Schenk	MEMS based Laser scanning Imager with Diagonal Progressive Scanning	JMEMS or Appl. Optics (planed for 2011)	international	IPMS; Imager concept with progressive scanning enabled by bi-resonant Lissajous scanning
Thilo Sandner,	Quasitstatic	JMEMS (planed for	international	IPMS: basic

TACO Deliverable D6.2 13/22

Denis Jung	MEMS scanner with vertical comb drives (working title)	2011)		MEMS concept of quasistatic (1D)-scanner
Thilo Sandner, Thomas Grasshoff, Georg Erley, Andreas Tortschanoff	Gimbal 2D-MEMS mirror for raster scanning using resonate / linear actuation (working title)	JMEMS (planed for 2012)	international	IPMS: MEMS device for raster (2D)-scanning CTR: control of linear axis
Thilo Sandner, Georg Erley, Thomas Grasshoff, Andreas Tortschanoff	Non-gimbal 2D- MEMS mirror for flexible vector scanning (working title)	JMEMS (planed for 2013)	international	IPMS: basic MEMS concept of quasistatic (1D)- scanner CTR: control of linear axis
Thilo Sandner, Georg Erley, Thomas Grasshoff, Andreas Tortschanoff	Synchronized adaptive MEMS scanning for foveated TOF sensors (working title)	JMEMS or Appl. Optics (planed for 2013)	international	IPMS: basic MEMS concept of quasistatic (1D)- scanner CTR: control of linear axis
Thilo Sandner, Georg Erley, Thomas Grasshoff, Andreas Tortschanoff	Non-gimbal 2D- MEMS mirror for flexible vector scanning (working title)	JMEMS (planed for 2013)	international	IPMS: basic MEMS concept of quasistatic (1D)- scanner CTR: control of linear axis
Co-authors of IPMS: Thilo Sandner, Georg Erley	Foveated TOF camera	Technical journal: e.g. Photonics News, to address directly the industrial system developers and industrial applications	international	Adaptive TOF sensor TACO; SINTEF, IPM, IPMS, CTR, IPMS: co-author related to MEMS components

Table 4: Summary of scientific articles, publications and presentations

3.2.4 Courses, talks organised

Partners involved	Date; Location	Course title, content	Type and size of the audience
SINTEF	2011	Norwegian Society of Automatic Control meeting	National

Table 5: Summary of courses organised

TACO Deliverable D6.2 14/22

3.2.5 Web-sites

Web-site	Description of the main TACO related information	Partners involved
http://www.taco-project.eu	The official website of the TACO project	TEC
http://www.ctr.at	The website of the partner CTR	CTR
http://www.fraunhofer.de	The website of the partner FHG	FHG
http://www.oxfordtechnologies.co.uk	The website of the partner OTL	OTL
http://www.shadowrobot.com	There will be a link on the Shadow Robot website to TACO official website	SHADOW
http://www.sintef.com	SINTEF OMD's website with link to TACO official site	SINTEF
http://www.tuwien.ac.at	The website of the partner TUW	
http://www.technikon.com	Short project description and link to the official homepage	TEC
http://www.shadowrobot.com/news/news.shtml http://twitter.com/shadowrobot	The TACO project was already mentioned on the SHADOW website and on Twitter	SHADOW

Table 6: Summary of relevant web-sites

3.2.5.1 TACO Project Website

A first preliminary version of the TACO project website containing all basic information was already available in M01. However, the fully official website was being prepared in parallel and has been officially launched end of M03.

The official project website provides an overview on the project and up-to-date information on its activities and results, as well as contact details, partner information and information on events.

The website is set up as content management system (Joomla!). The usage of a readily available open source solution which also includes a number of tools for online WYSIWYG editing, and its adaptation to the project needs, helped to keep the development costs low. The website can be viewed with a standard web browser and will be kept alive throughout the project period and a few years afterwards.

The TACO project website is available under the following link:

http://www.taco-project.eu/

The project website serves as the most versatile information and communication tool, because on the one hand it provides the opportunity to provide information for a worldwide audience and on the other hand enables a working platform for the project team members.

Apart from the public area, there is a password-protected area reserved for project participants in order to share project-internal data. Only registered partners are able to enter it and can benefit from the options offered there. These include for example a calendar for appointments and meetings, a forum for information exchange concerning special topics, a Wiki function to post and/or deal with articles, mailing lists for reaching special mailing groups as well as archives of the mailing lists.

TACO Deliverable D6.2

Figure 1: Website of the TACO Project

3.2.6 Press releases, newsletters

Title	Publication details	Partners involved
Monthly Newsletter	The progress of the TACO project will be published in SHADOW's monthly newsletter.	SHADOW
Opening project newsletter	Published to SHADOW's media list; several resulting articles	SHADOW
"Grenzenlos forschen im Netzwerk"	Article in the CTR annual report 2009	CTR
Company Newsletter	3x Article in the newsletter "CTR-times" (2010, 2011, 2012)	CTR
"3D-kamera skal gi roboter bedre syn" ("3D sensor gives robots better vision")	Press release, released	SINTEF
"Demonstration of a new 3D sensor that gives robots better vision"	Press release, 2012	SINTEF
Press release for exhibitions e.g. on Photonics West, OPTOS, Micromachining/MEMS or Laser, subject will be on quasi-static MEMS scanners for flexible and beam steering as well as their use in an adaptive TOF camera	Jan. 2012: Fraunhofer Press Release	FHG-IPM, FHG-IPMS
MEMS components for TOF sensors	Technical journals e.g. Photonics, etc.	IPMS
MEMS based TOF sensor (entire system)	Technical journals e.g. Photonics, etc.	SINTEF, IPMS, IPM, CTR

TACO Deliverable D6.2

TACO – Development of an adaptive 3D camera	Vista – Newsletter of Oxford Technologies Ltd (Spring 2010)	OTL
3D Kamera ermöglicht Robotern künftig eine "bessere Sicht"	Distribution via www.pressetext.at in May 2010 in relation to a successful project start; The press release is also available on the TACO project website	TEC
Robots to emulate human vision	the engineer, June 1, 2010, http://www.theengineer.co.uk/news/news- analysis/robots-to-emulate-human- vision/1002721.article	Based on an interview with SINTEF
Roboter, die mit "Menschenaugen" sehen	derstandard.at, July 7, 2010, http://derstandard.at/1276413543970/Roboter- die-mit-Menschenaugen-sehen	TUW

Table 7: Summary of press releases, newsletters

3.2.7 Other

Category	Publication details	Туре	Partners involved
TV	Kärnten heute (2012)	National	CTR
TV	Schrødingers katt Leading Norwegian prime time TV programme on popular science; presentation on robot vision and TACO. Will be scheduled autumn 2010.	National	SINTEF
Weekly newspape r	List publications	National and others	SINTEF
Internet	http://www.eurekamagazine.co.uk/article/24198/3D-sensor-gives-robots-better-vision.aspx	International	SINTEF
Internet	http://www.sciencedaily.com/releases/2010/04/1004081413 00.htm	International	SINTEF
Internet	http://theengineer.co.uk/news/better-vision-for-robots/1001684.article	International	SINTEF
Internet	http://news.softpedia.com/news/New-Sensors-for-Robots-in-the-Works-139410.shtml	International	SINTEF
Exhibition & Trade show	Photonics West Jan. 2011, San Francisco, USA; Demonstrator of linear (quasistatic) 1D scanner	International	IPMS
Exhibition & Trade show	Optatec 2011, June 2011; Demonstrator of gimbal 2D-MEMS raster scanner linear (resonant / quasi-static)	National	IPMS
Exhibition & Trade show	Micromachining / MEMS 2011, Aug. 2011; Demonstrator of gimbal 2D-MEMS raster scanner linear (resonant / quasistatic)	International	IPMS
Exhibition & Trade show	Micromachining / MEMS 2013, San Francisco, USA Demonstrator of synchronized 2D-MEMS raster components / scanner modules for TOF sensors	International	IPMS
Interview			

Table 8: Summary of other dissemination activities

TACO Deliverable D6.2 17/22

3.2.7.1 The TACO Logo

In order to improve the visibility of the TACO project, a logo was designed. The logo is used on all internal templates as well as on all kinds of external dissemination tools.

Figure 2: TACO Logo

3.2.7.2 TACO Folder

The official TACO folder is a four-page informative and graphically appealing A4 flyer, highlighting the objectives and the work programme of TACO. It can be used and has already been used for distribution at conferences or certain other events in order to provide further visibility to the project. An electronic version of the leaflet is available on the TACO website.

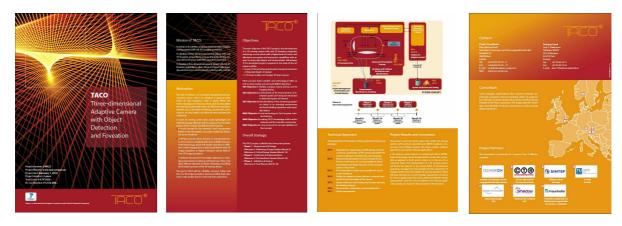


Figure 3: TACO Folder

3.3 Contributions to standards

One of the goals of the TACO project is to widely disseminate the results at different levels and to different communities in order to spread the culture and technologies in the field of robotic design. One target for such dissemination is a set of standardisation working groups whose activities are or can be put in relation with the knowledge developed in TACO. The activities in the field of standardisation will be performed at different levels as appropriate: setting up working groups specifically targeted by the TACO topics, creation of formal liaisons between already existing bodies and the TACO consortium, direct participation in existing bodies, or by interaction with members of existing bodies.

Influencing standardisation activities will be achieved through the TACO project partners. In fact many of them have strong and active links with relevant specification and standardisation bodies to ensure wider use of metrics, standards, evaluation and certification methods and best practices in robotics and sensor technologies.

A significant part of the TACO project is targeted towards benchmarking the sensor in itself and towards relevant applications. Where possible, the consortium will apply industry-standard methods

TACO Deliverable D6.2

and benchmark databases for quantifying the quality of the TACO system both as a sensor system, and for use within specific scenarios. The use of industry-standard metrics will enable outside communities to directly compare the TACO system to existing technologies. Where existing metrics are inapplicable, the TACO consortium will work to extend and develop appropriate metrics for the benefit of the community.

Many TACO results will be proposed as draft standards to the technical community, with an open request for comments and suggestions. As a general principle, TACO will pursue formal standardization only for mature and proven concepts. This means that only a small fraction of the results of TACO are likely to be submitted for formal standardisation, but it also means that the chances of adoption of such standard contributions will be fairly high. Several TACO members have strong and active links with relevant specification and standardisation bodies which they will use to promote our work.

The consortium also has relations to the American Society for Testing and Materials (ASTM). A main target is to foster activities within the technical Committee E57 on 3D Imaging Systems (http://www.astm.org/COMMIT/SUBCOMMIT/E57.htm), which is also working on the definition of standards in the area of the TACO project. This group which was founded end of 2006 is working in six subcommittees: Terminology, Test Methods, Best Practices, Data Interoperability, Executive and Strategic Planning / Marketing. Due to the activities of the core consortium members a tight relation to other industry developments can be ensured. A first step in the dissemination is the publication of major parts of the project description.

TACO Deliverable D6.2

4 Cooperation with external organisations

In addition to the various dissemination activities reported above, the TACO consortium is in close cooperation with external organisations. The involved partners and their existing and planned activities are listed below.

Actual/	Type, content of	Cooperation	Countries	TACO partners
planned date	the cooperation	partners	addressed	involved
-	First contact with	WillowGarage	International	SHADOW
June 2010	WillowGarage			
	people to check on			
	the idea of using			
	the TACO sensor			
Ongoing	on their PR2.	WillowGarage	International	SHADOW
Origoing	Keep people at WillowGarage	vviiiowGarage	International	SHADOW
	informed about the			
	progress, ask them			
	for feedback.			
Ongoing	Work with HANDLE	HANDLE	EU	SHADOW
Origoning	project	TIANDLL		STIADOVV
Ongoing	Relationship with	UK MOD	UK	SHADOW
Origonia	possible end-user	OK WOD		OI I/ IDOVV
2012	Camera	RTD partners of the	International	SINTEF
	manufacturer	TACO project		
Ongoing	Automation	Robot Norge ++	National	SINTEF
	industry			
Ongoing	3D measurement	CargoScan	National	SINTEF
	equipment			
	manufacturer			
Ongoing	3D machine vision	Tordivel AS	National	SINTEF
	software vendor			
Ongoing	Surveillance	Detec	National	SINTEF
Ongoing	Recycling industry	TOMRA	national	SINTEF
Ongoing	Synchronized (HIPERSCAN	EU	CTR, IPMS
	MEMS drivers (for			
	spectroscopic			
Ongoing	applications) Working	The ITER Fusion	International	OTL
Ongoing	relationship with	Project	international	OIL
	possible end-user	Froject		
Ongoing	Working	The Joint European	International	OTL
Chigoling	relationship with	Torus (JET) - EFDA	International	
	possible end-user	TOTAS (OLT) LIDA		
Ongoing	Working	Dounreay Site	International	OTL
Chigoling	relationship with	Restoration Limited	momational	
	possible end-user	(DSRL) - UKAEA		
	possible cha aser	(DONE) ONALA	_1	1

Table 9: Cooperation with external organisations

TACO Deliverable D6.2 20/22

5 Participation in projects

5.1 Participation in international projects

In order to promote knowledge sharing and collecting among the Consortium partners and various organisations within similar research sphere, project partners participate also in several other complementary projects, which are listed below.

	ITEA / MEDEA +	
ICT FP7		
MEMFIS	The MEMFIS project addresses size and power requirements of MEMS-technology and recent achievements in electronic design to develop a miniaturised Fourier-Transform MIR spectrometer. The key research effort dealing with the development of these components is expected to result in unique MEMS devices capable of reliable operation. An integrated control and chemo metrics module converts the spectroscopic data into concentrations. The resulting compact, robust and economical analysers can be deployed in a large number of roles, such as minimally invasive medical diagnostics, environmental and workplace monitoring, industrial real-time process control and even security applications.	TEC, CTR, Fraunhofer IPMS, Bruker, KOC University, RHE, Sopralab, Vigo Systems, HiperScan
Other		
Leap2Tech	Handling flexible/limp materials by using 3D sensing	SINTEF

Table 10: Participation in other EC projects

5.2 Participation in national projects

In addition to the projects that are run on the European level, the partners are also active in numerous national projects.

Austria			
KIRAS	Trusted Computing for the Austrian Government.	Partner involved:	
	www.trusted-computing.at	TEC	
MOEMSMOD	Development of miniaturized modules for optical	CTR, IPMS, Hiperscan	
(COMET-K1)	position feedback for resonant microscanners with 1D		
	and 2D designs.		
	Norway		
Unmanned Oil	Robotics for oil & gas platforms	Statoil, SINTEF	
Platform			
Auto3D	3D machine vision software	Tordivel, Kongsberg	
		Automotive, Conoptica,	
		SINTEF	
NextGenRob	Next generation robotics for Norwegian industry.	SINTEF, NTNU,	
		RobotNorge, Tronrud	
		Engineering, Hydro,	
		HÅG, Glendimplex	

Table 11: Participation in national projects

TACO Deliverable D6.2 21/22

6 List of Abbreviations

Anncd.	Announced
CTR	Carinthian Tech Research AG
EC	European Commission
EU	European Union
FHG	Fraunhofer IPM
OTL	Oxford Technologies LTD
SHADOW	The Shadow Robot Company Limited
SINTEF	Stiftelsen SINTEF
TACO	Three-dimensional adaptive Camera with Object Detection and Foveation
TEC	Technikon Forschungs- und Planungsgesellschaft mbH
TUW	Technische Universität Wien

TACO Deliverable D6.2 22/22