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Abstract²This paper presents a real-time contour tracking 
and object segmentation algorithm for 3D range images. The 
algorithm is used to control a novel micro-mirror based 
imaging laser scanner, which provides a dynamic trade-off 
between resolution and frame rate. The micro-mirrors are 
controllable, enabling us to speed up acquisition significantly 
by only sampling on the object that is tracked and of interest. 
As the hardware is under development, we benchmark our 
algorithms on data from a SICK LMS100-10000 laser scanner 
mounted on a tilting platform. We find that objects are tracked 
and segmented well on pixel-level; that frame rate/resolution 
can be increased 3-4 times through our approach compared to 
scanners having static scan trajectories, and that the algorithm 
runs in 30 ms/image on a Intel Core i7 CPU using a single core.  

I. INTRODUCTION  

Sensors providing high-quality, densely sampled 3D data 
are enabling technology for robots that interact with objects 
in their surroundings. Laser scanners are popular sensors for 
robots due to that they provide high-quality data with a 
reasonable data rate, also in adverse conditions like sunlight. 
The data quality and robustness is largely due to that laser 
range scanners acquire distance measurements by 
sequentially illuminating and measuring individual scene 
points.  

To obtain an image, the point measured must be scanned 
across the scene. Today, most laser scanners do this by using 
a 1D mirror providing only a single (usually horizontal) line 
of data. By themselves, such laser scanners are unable to 
provide an image of their surroundings, which strongly 
limits the amount of scene interpretation that can be done. 
To obtain 3D images, some sort of tilting platform is 
employed which tilts the sensor such that the image can be 
built up one line at a time. This means that each image will 
take a few seconds to capture, usually too slow for real-time 
interaction with moving objects. By adjusting the vertical 
tilting speed of the laser scanner, it is possible to trade lower 
image resolution for a higher frame rate.  

In this paper, we present a combined hardware and 
software concept providing high quality, high resolution 
imaging laser scanner data of objects that are automatically 
tracked by the sensor itself.  

Our approach is based on a hardware concept of 
controllable micro-mirrors, combined with a fast time-of-
flight range measurement unit. The range measurement unit 
provides data at a constant rate. By controlling the vertical 
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speed of the mirror, we can dynamically make a tradeoff 
between frame rate and spatial resolution. This enables 
foveation, meaning that we acquire high quality data only on 
the object being tracked, possibly even with a higher frame 
rate than for a regular scanner.  

To control these mirrors in real-time, we present a real-
time tracking algorithm which is capable of both track and 
pixel-level segment objects based on a very rough 
initialization of the object contour. This tracking algorithm 
enables us to only capture data on the object of interest, thus 
speeding up acquisition. The high-quality, high frame-rate 
data provided by this concept can open up for better object 
interaction and recognition in dynamic scenes. 

The main contributions of this paper are a real-time 
computationally efficient algorithm which tracks and 
segments object in 3D range data, and the application of this 
algorithm to control a foveating 3D laser scanner.  

The rest of this paper is organized as follows: Section II 
describes related work. Section III provides a system 
overview and section IV details the actual tracking 
algorithm. Section V provides our experimental setup, which 
results are presented in section VI. We conclude the paper in 
section VII.  

II. RELATED WORK 

For this paper, related work encompasses both foveating 
sensors, as well object tracking algorithms for range images.  

A. Foveating sensor 

Existing foveating sensors are mainly realized by pixel 
grouping on sensors or macro hardware movements.  

Sensor-based approaches include early foveating sensors 
[1] that mimic the human eye by using a log polar mapping 
of the imaging sensor area. Other approaches enabled 
dynamic grouping of sensor pixels [2], adaptively 
controlling which CMOS imaging sensor areas to read with 
high resolution. 

Hardware movement methods use a pan/tilt unit to 
achieve foveation. Bimbo and Pernici [3] present a system 
that foveates by positioning a 2D camera with an external 
pan/tilt device. Similarly, a combination of range sensors to 
get active gazing control is presented in [4]. Here data from 
a 2D laser range finder is used detect obstacles, which in 
turn is used to pan/tilt an external time-of-flight camera. In 
[5] a laser scanner is mounted on motorized head to enable a 
roundly swinging motion to increase sampling density in 
predefined regions of interest.  
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By contrast, the micro-mirror based approach that we are 
developing does not need large sensor movements. By also 
including real-time tracking software, we also solve the 
problem of where to gaze, which previous approaches often 
have left unresolved.  

B. Tracking in range data:  

Object tracking in range images tend to focus on 
template alignment approaches, such as the Iterative Closest 
Points algorithm (ICP) [6], an iterative approach for aligning 
a prior 3D model. The ICP algorithm is not sufficiently 
robust for use alone, due to bad convergence properties. 
Particle filters has been used in conjunction with ICP 
alignment, both in registration and tracking approaches [7]. 
Modern software libraries for point clouds follow this 
strategy [8], using GPUs to achieve real-time performance. 
Active contours using filtered range images and visual 
images is discussed in [9], which also uses a particle filter 
using depth information for target positioning. Other real-
time contour based approaches for object tracking and 
segmentation [10] do not provide the necessary features for 
working on range images. 

Our approach works on range data alone without 
requiring a prior model of the object to be tracked. Instead, 
the tracker is initialized with a rough contour of the object, 
which is updated and refined on pixel-level by the tracker 
automatically. Furthermore, we do not need GPUs to 
achieve real-time performance.  

III. SYSTEM OVERVIEW 

The foveating 3D sensor under development is built on 
three key technologies: controllable micro-mirrors, 3D time-
of-flight hardware and a 3D tracking algorithms that is used 
to control the scanning trajectory. 

The controllable micro-mirrors and time-of-flight 
hardware enable the scene to be sampled with varying 
spatial and temporal resolution. The tracking algorithm 
employed enables the control of spatial and temporal 
resolution to happen in an intuitive fashion. Combined, this 
sensor concept can provide significantly better data than 
existing sensors. This is partly due to the measurement 
principle itself, and partly due to the sensor's foveation 
capability.  

A. Micro-mirrors and 3D time-of-flight hardware  

The hardware is an adaptive 3D sensor that uses 
lightweight, robust micro-mechanical scanning elements for 
flexible two-dimensional beam-steering of fast single point 
time-of-flight distance measurements. Figure 1 outlines the 

hardware setup. 

The pulsed laser beam and time-of-flight hardware will 
be capable of measuring up to one million 3D points per 
second. To build up images from these single measurements, 
the laser beam must be swept across the scene. This is 
accomplished by using controllable micro-mirrors that allow 
for very precise and rapid control of the beam direction.  

Current laser scanners use large mirrors that move in 
fixed patterns (e.g., constant oscillation or rotation). This 
means that an extraordinary amount of power is required to 
enable rapid shifts of scanning patterns. The use of novel 
quasi-static MEMS scanning mirrors [12] enables the system 
to provide foveation ± i.e., rapidly controlling the beam 
direction and thus adjusting the spatial and temporal 
resolution of the acquired data.  

B. 3D foveation 

3D foveation enables the sensor to go beyond simply 
providing data with high spatial or temporal resolution ± it 
allows the sensor to adjust the resolution according to the 
scene. 

 Representing 3D data as range images ease later analysis 
of the data on the robot. In principle, the use of controllable 
micro-mirrors allows arbitrary scanning patterns. The 
scanning patterns are chosen to be raster scans to facilitate 
the conversion into range images. Foveation by increasing 
resolution is achieved by adjusting the vertical mirror speed.  

 
Figure 1. Hardware concept of the 3D sensor. The emitted modulated (1) 
laser beam (2) is scanned by mirrors (3) on the target. The light reflected 
from the measured surface (4) is collected by mirrors (5), reaches the 
single element detector (7) via collecting optics (6). The distance to the 
target point follows from the traveling time of received (8) with respect to 
the emitted signal (1) [11]. 
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Figure 2. Time series showing how the foveation software uses saliency analysis of a uniform image from the scene to capture an image zoomed in at the 
region-of-interest. A sinusoidal mirror plan (1) is used to capture the uniform intensity (2) and range images (intensity image is shown to ease visual scene 
interpretation). The object of interest is detected in the the captured data (3). A mirror plan for zoomed data acquisition (4) is computed from the sampling 
density function. This results in zoomed intensity (5) and range images, where the object-of-interest appears magnified due to the increased sampling density 



  

We have chosen a foveation regime as outlined in Figure 
2. In this regime, every second frame is acquired as a normal 
range image with uniform sampling. This range image is 
analyzed by our tracking algorithm to determine the current 
silhouette of the object-of-interest. Based on this object 
silhouette, WKH�DOWHUQDWLQJ�VHFRQG�IUDPH�LV�´]RRPHG in´��L�H�, 
acquired with increased spatial resolution on the tracked 
object. The number of data points is equal for both frames to 
maintain frame rate, and the full field-of-view is kept. This 
real-time feedback system is detailed further in [13].  

IV. TRACKING ALGORITHM   

Our tracking approach consists of three distinct steps, 
each one adapted for working on range images in real-time. 
The object to be tracked is represented as an object 
silhouette.  This silhouette is tracked and updated according 
to camera/object motion. This is done in a three step process 
consisting of edge detection (section A), rigid tracking 
(section B) and contour adaption (section C). Section D 
outlines how we use the object silhouette to control the 
sensor and provide high resolution imagery of the tracked 
object.  

A. Edge detection 

As basis for later tracking and segmentation, we rapidly 
calculate the depth transitions in the scene. This is done in 
two steps: Detection through bearing angles followed by 
separation and normalization. The range image 4ç:Qá R;, 
containing the range to each point in the pixel with 
coordinate :Qá R; for time P, is used as input for the 
algorithm.  

Edge detection through bearing angles: Harati [14] 
introduce the notion of "bearing angle" for detecting edges 
in range images. The "bearing angle" indicates the angle 
between the measurement beam and the surface (Figure 3). 
For real depth edges, the bearing angle will be close to 0 or 
180 degrees. This measurement can be used to create a more 
robust method for edge detection than simply detect the 
depth of edge transitions, followed by a hard threshold.  

Harati [14] calculate these explicitly using trigonometric 
formulas. To gain speed, we instead calculate the 
approximated bearing angle measure in each pixel position 
:QáR; for the Q direction at the time P as 

$çáè:Qá R; L �¿è4ç:Qá R;
4ç:Qá R;

 

where ¿è4ç:Qá R; is the detected edge strength in Q 
direction, and 4ç:Qá R; is the measured range. The 

calculation of  ¿è4ç:Qá R; is done using a Sobel-operator. 
This provides a rapid near depth-invariant measure for edge 
strength. Approximated bearing angle in R direction, 
$çáé:Qá R;, is calculated using the same procedure but with 
the edge filter transposed. This provides two images 
$çáè:Qá R; and $çáé:Qá R; providing edge magnitude rowwise 
and columnwise.  

Edge separation and normalization: We focus on tracking 
foreground objects, meaning that the background always 
will be behind the object. This means that we expect that the 
sign of the detected edge magnitudes to align with the edge 
direction on the object itself. On the left edge of the object 
we expect the edge magnitude to be positive, on the right 
side negative. Similar assumptions are made for top/down of 
the object.  

To better preserve edges prior to smoothing, we separate 
$çáè:Qá R; and $ç áé:Qá R; according to the sign of the edge 
magnitude such that we get a bearing angle measurement #ç  
that is directional 

#ç:Qá Rá .; L ���:sá����:rá$çáé:Qá R;�3;;

#ç:Qá Rá4; L ���:sá����:ráF$çáé:Qá R;�3;;
#ç:QáRá7; L ���:sá����:rá$çáè:Qá R;�3;;

#ç:QáRá&; L ���:sá����:ráF$çáè:QáR;�3;;
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Figure 3. Illustration of bearing angle $:QáR;. Sensor measures 
neighbouring pixels 4:Qá R; and 4:Qá R F s;. The bearing angle allows 
depth-invariant classification of depth transitions.  

 

(a) Original range image 

 

(b) Edge images 'ç 

 

(c) Zero-crossing images <ç 

Figure 4. Result of edge detection on an example range image (a). Edge 
images (b) and zero-crossing images (c) shown in top-down order left, 
right, top and bottom edges. 



  

where #ç:Qá Rá .;á#ç:Qá Rá4;á#ç:Qá Rá7;á#ç:Qá Rá&; are 
respectively Left, Right, Up and Down edge magnitude 
images, and 3 is a chosen upper limit for normalization.  

Each of these four images #ç:Qá Rá�; are separately 
smoothed with a 1D Gaussian filter providing us edge 
magnitude images 'ç:Qá Rá�; as shown in Figure 4b. 
%ç:Qá Rá .; and %ç:Qá Rá4; are filtered with a horizontal 1D 
Gauss filter, for %ç:Qá Rá7; and %ç:Qá Rá&; a vertical filter is 
used. Due to that the edges have previously been separated 
according to direction, they are preserved better during 
smoothing. 

 The 'ç images are then convolved with a 1D filter 
providing images <:Qá Rá�; for edge detection through zero-
crossings (Figure 4c). In effect, we have found that these 
<:Qá Rá�; images are also well suited for detecting sudden 
changes in normal direction.  

B. Rigid tracking 

It is reasonable to assume that the object does not change 
shape significantly from frame to frame. A fully rigid 
tracking of the object from the previous frame to the next 
can thus be done. This is done by minimizing the following 
cost function with respect to a movement :IáJ; in pixels 
from the previous frame, in the :Qá R; direction:  

ó:4ç?5á4ç á'ç á<ç áIáJ;

L s

0¼
Í óÖâáçâèå:'ç á ?áIáJ;

ÖÔÐ¼E Ù

0È
Í óåÔáÚØ:4ç á4ç?5á KáIáJ;

âÕÐÈ

 

where % is the contour of the object in the previous frame 
4ç?5, and 1 is the pixels covered by the object in previous 
frame. 0¼  and 0È indicate the number of points in % and 1. 
óÖâáçâèåand óåÔáÚØ are cost functions described later, and Ù 

is a scaling factor. The contour % may be unordered, which 
allows for rapid updates when maintaining % through the 
algorithm. Furthermore, % may belong to multiple disjoint 
objects that are moving at the same speed.  

 The cost function chosen ensures that the object 
silhouette rigidly snaps to object depth edges similar to the 
one from the previous image, while also ensuring that the 
underlying range data match between the previous and 
current frame.  

Contour cost term: The contour part óÖâáçâèå  of the cost 
function is determined by first extracting the object contour 
on pixel-level, and determining with four-connectivity which 
neighboring pixels are background. The relative placement 
of the contour pixel and the neighboring background pixel 
gives a direction @Ü. Each contour pixel ?Ü is thus 
represented as its pixel coordinates :QÜá RÜ; plus the direction 
@Ü, E being index. @Ü may be either L, R, U or D. This is used 
to choose which 'ç:Qá Rá�; image to perform edge strength 
lookup in.  

If a contour pixel has multiple background pixel 
neighbors, the contour pixel is repeated accordingly in %. 
The tracker then uses the following formula for calculating 
the contour alignment per contour pixel: 

óÖâáçâèå:'ç á ?Ü áIáJ; L F'ç:QÜ EIá RÜ E Já@Ü; 
Due to the previous smoothing of 'ç, the convergence 

basin of óÖâáçâèå  is widened. The contour term is minimal if 
the contour precisely aligns with the object's depth edges.  

Range cost term: Simultaneously with the extraction of 

the contour, all foreground object pixels KÝ L kQÝá RÝo are 

enumerated into 1. These are used as basis for a template 
matching, by calculating the range cost term as 

óåÔáÚØk4ç á4ç?5á KÝ áIáJoL .4ç?5kQÝá RÝoF 4çkQÝ EIá RÝ E Jo. 

The range cost term is minimal if the objects precisely 
align over each other.  

Actual optimization: ó is optimized with respect to 
:IáJ; using the simplex direct search method (Nelder-
Mead), initialized with a step size of 1 pixel. This provides 
an estimate of object movement in pixels from the previous 
frame to the current frame.  

C. Adaption of object's contour  

The third part of the tracking adapts the current contour 
of the object to any changes in the object contour due to 
change of viewpoint or object shape.  

First, the object silhouette is moved according to the 
:IáJ; established in the previous rigid tracking, and the 
contour % of the moved silhouette is extracted.  

The goal of the algorithm is to adapt the contour % such 
that <ç:�á�á@; P r on the contour, and <ç:�á�á@; O r on the 
immediate outside of the contour, where @ chosen according 
to the contour's local direction. 

Before running the actual contour update, we establish 
@àÜáand @àÔëas the minimum and maximum range of 
accepted new object pixels. These are calculated by 
estimating minimum and maximum range of the object in 
the previous range image 4ç?5 plus a pre-defined tolerance.  

To perform fast pixel-level contour updates, a state-
image 5 is maintained with equal resolution to the original 
range image. Each pixel contains the state of each pixel, 
which is defined as follows to enable 8-bit state pixel 
storage: 

5:Qá R; L � ]rå� �������������

twv ����������

tww ��������������������

 

The image 5:QáR; is initialized based on the object 
silhouette and the definition above, setting background 
pixels to 0. Furthermore, a variable 8 is set to 0, indicating 
the current pixel value in 5 of the background. 8 is 
incremented with each iteration over all %ä� Pixels  5:Qá R; Q
8 are considered to be background.  

After these initial steps, each contour pixel ?Ü L :QÜ á RÜ; 
in % is processed according to the algorithm described in 
Figure 5, and illustrated in Figure 6.  

For each contour pixel, we check whether the four-
connected neighbours are background pixels. The position of 



  

the found background pixels determines which <ç:Qá Rá�; are 
used to update the contour in each direction.  

The update will convert some contour pixels into 
background pixels. However, to ensure that % can be 
processed in an unordered fashion, it is important that these 
newly created "background" pixels are not considered to be 
background pixel in the current iteration over %. This is done 
by setting such "background" pixels in 5:Qá R; to 8 E s.  

In the subsequent iteration, 8 is increased by one. As 
pixels 5:Qá R; Q 8 are considered background, fresh 
background pixels from the previous iteration will now be 

considered background. Incrementing 8 is the element in the 
algorithm that allows % to be unordered and belonging to 
multiple disjoint objects. 

The algorithm is repeated a suitable number of iterations 
(typically 5). This allows each contour pixel to move up to 5 
pixels. The final object silhouette is extracted as $æ L
�5:Qá R; R twv which we subsequently normalize by 
performing morphological opening. The algorithm has been 
implemented in a mixture of Matlab and C. 

D. Using the Tracking Result for Foveation 

The binary silhouette generated by the tracker can 
directly be employed for making the scanner foveate. A 
vertical region is picked out which surrounds the detected 
object. This region is sent to the laser scanner for acquisition 
of the next frame. To be able to capture the object even in 
the case where unexpected motion happens, a somewhat 
wider region than the object silhouette is chosen. This 
enables us to cope with the inherent latency induced by 
using a previously acquired image to predict where the next 
region-of-interest is located. In addition, mirror inertia 
places constraints on the minimum size of regions-of-
interest. 

V. EXPERIMENTS 

We tested the tracking algorithm and foveation 
mechanism on real data of moving objects, where the sensor 
itself is either static or moving.  

x For each contour pixel ?Ü Ð % do: 

o For each pixel 2� L � :Qãá Rã; of the four-connected 

neighbours of ?Ü L :QÜ á RÜ;, check whether 2 is 

background by checking that 5kQãá Rão Q �8. If so: 

� Calculate the direction @ that relates ?Ü and 2 as 
@ L 2 F ?Ü , and classify it as ?× into one of L, 
R, U, D. 

� If <ç:QÜ á RÜ á ?×; O r shrink the object by one 
pixel by removing :QÜ á RÜ; from the object: 

x Set 5:QÜ á RÜ; L 8 E s, making it 
background. By not setting it to 8 (or 0), 
later processed contour pixels in this 
iteration will not consider this pixel 
background, ensuring that the order each 
contour pixel is processed makes no 
difference.  

x Set ?Ü
ñ L � ?Ü F ?× L :QÜ

ñá RÜ
ñ; , effectively 

moving the contour pixel one pixel 
inwards 

x If 5:QÜ
ñáRÜ

ñ; �L �tww, then convert this 
foreground pixel into a contour pixel: 

o Set 5:QÜ
ñá RÜ

ñ; = 254 

o Replace the entry ?Ü in % with ?Ü
ñ 

x Else: 

o Remove ?Ü from the %, as ?Ü
ñ already 

either is contour or background 

x For each of the four-connected neighbours 

0 L :Qáá Rá; of ?Ü
ñ: 

o If 5:Qáá Rá; L tww, set 5:Qáá Rá; L
twv and insert 0 into %. This ensures 
that newly exposed foreground pixels 
becomes contour pixels.  

� If <ç:Qãá Rãá ?×; �P �r, expand the object by one 

pixel: 

x Check that @àÜá Q 4çkLÜ á LÝo Q @àÔë. 

Abort expansion if this is not fulfilled.  

x Insert 2 into %� 

x Set 5:LÜ á LÝ; �L �twv to indicate that it is 

contour 
o If ?Ü has no background pixels as neighbours, it is 

removed from %, and 5:QÜ á RÜ; is set to 255. 

x Increase 8 by 1. 
 
Figure 5.  One iteration of the algorithm for adjusting contour according 
to object boundaries. 
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Figure 6. Illustration of the adaption of the object contour. Red lines 
indicate the contour to be fitted, and colors show the value of pixels in 
5:Qá R;. F indicates foreground, C contour, and 0-2 is background. a) Initial 
contour and previous image. b)-d) adaption to the changed contour in 
current image through iterations, b) before iteration (c) first iteration 
:8 L r; d) second iteration :8 L s;.  Lower right of contour is grown in a 
straight-forward manner. Top left concavity requires shrinking of contour. 
In c) the contour is moved one step in, creating a new background pixel 
which is initialized to 8 E s L s. Regardless of processing order, %5 and %6 
will not consider the new background pixel to be background, as the criteria 
for background pixels is 5:Qá R; Q 8 and 8 L r. d) shows final adaption.  



  

As the actual hardware is not yet available, we have used 
a line-scanning SICK LMS100-10000 laser scanner placed 
on a tilt unit to capture test data. The tilt unit enabled 
building a 2D raster image of range measurements. The data 
acquisition took roughly 30 seconds per image, so stop-
motion animation techniques were used to acquire data 
sequences of moving objects. The foveation was done using 
a hardware simulator. The data are summarized in Table I. 

Based on these data, we benchmark the tracker's 
performance; quantify the resulting performance on 3D data 
quality enhancement; and the tracker's real-time 
performance. 

A. Assessing tracker performance 

We have used the tracker algorithm to track objects in 
the pre-recorded sequences. The tracker has been initialized 
by the user clicking on a single range pixel in the first range 
image of the sequence, and range pixels being less than 
N L räu meters from the selected pixel have been selected as 
the initial silhouette of the image. The manual initialization 
could easily be replaced by an automatic initialization from a 
robot at a later stage. This silhouette is subsequently updated 
and refined.  

The tracker is benchmarked by comparing the silhouette 
produced by the algorithm to a manual ground truth for the 
recorded sequences. The ground truth is created by 
indicating the moving object as using a binary mask per 
sequence frame. To provide quantification of the tracking 
and segmentation, this is viewed as a segmentation problem. 
We estimate how many ground truth object pixels that are 
classified as object pixels (object segmentation), and how 
many ground truth background pixels that are misclassified 
as object pixels (background segmentation). We normalize 
these numbers respectively by the number of object and 
background pixels and report them in percent. 

To measure the effect of the separation of edge directions 
before smoothing as outlined in section IV.D we have 
performed tracking of objects with and without separation 
and compared results.  

In addition, we measure the average time per frame for 
the tracking algorithm when run on a 2.0 GHz Intel Core i7.  

B. Assessing foveation performance 

In our foveation regime, the benefit of foveation is to 
provide high spatial resolution in detected regions-of-
interest, while maintaining the overall frame rate. A non-

foveating system that uses the same underlying hardware 
would by comparison have to provide the same high spatial 
resolution in the whole scene. Because of the constant 
sampling rate, this would result in a net lower frame rate for 
the system. We therefore quantify foveation as the increase 
in sensor frame rate compared to a non-foveating system. 

The chosen foveation regime keeps a constant number of 
data points per range image. Therefore, the maximum 
achievable frame rate increase is limited by the field-of-view 
covered by the object-of-interest. As a result, the foveated 
system becomes equal to a non-foveated system if the object 
covers the full field-of-view. We report on the average frame 
rate increase enabled by the foveation system both in 
absolute numbers compared to the sensor without foveation, 
and relative to the maximum achievable frame rate increase.  

It is furthermore crucial for a foveating system that it 
actually foveates on the object of interest. We therefore also 
measure how much of the ground truth object silhouette that 
is covered by the selected foveated region.  

VI. RESULTS AND DISCUSSION 

Figure 7 show some example results of applying the 
tracker to a sequence with moving camera and tracking a 
non-static object. We see that the object is tracked and 
segmented well from the surroundings even with a poor 
starting silhouette. After a few frames, the contour 
converges to the same contour regardless of starting contour.  

Table II provides the numerical results for the tracker 
applied to different sequences. We see that the tracker is able 
to well keep track of the object, with little spillover to the 
background. The time consumption is approximately 30 ms 
for all images, utilizing a single core on an Intel Core i7 
CPU, which is meets the system's realtime demands.  

Table I: DESCRIPTION OF SIMULATED DATA SETS 
Data 

set 
Scene description 

Camera 

motion 

0 Robot moving from left to right Static 

1 Robot moving towards the 3D sensor Static 

2 Robot moving from left to right Moving 

3 Robot moving towards the 3D sensor. Moving 

4 
Several objects moving in different ways 
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Figure 7. Tracking results for robot moving relative to the sensor with different initial contour. User has clicked on a range pixel on the robot, and all pixels 
closer than N meters is initial contour, as shown in frame 1. Top: N L räs. Bottom: N L räu. White line shows tracked contour. Both camera and robot is 
moving.  



  

Table III shows the foveation performance. We achieve a 
three- to fourfold increase of frame rate/resolution, and are 
unable to reach the maximum possible frame rate increase. 
This is due the fact to that the sensor foveates on a 
somewhat larger scene region than the object itself, as 
indicated in section IV.D.  

The average numbers in Table III are broken up per 
frame in Figure 8 for some selected sequences. We see that 
the tracker robustly track and provide foveated data on the 
object of interest. For the sequence where the camera and 
object gets gradually closer to each other, we can see that the 
maximum achievable frame rate increase of foveation 
degrades as the object gets closer.  

For objects that have less defined edges (or more internal 
structure), we found that the edge separation improved 
results. Figure 9 shows an example of an object (a plant) 
where the tracking result is improved due to edge separation.  

VII. CONCLUSION  

This paper proposes a real-time tracking and object 
segmentation algorithm for 3D range images, and applies it 
to for 3D foveation. The algorithm is computationally 

inexpensive, real-time capable and requires no other 
initialization than a rough initial object silhouette.  

The algorithm leverages several important properties of 
3D laser scan data to achieve real-time performance, 
primarily that edges and normal transitions define well 
object boundaries for foreground objects.  

We have shown that this enables robust object tracking 
and segmentation for such objects. Furthermore, by 
employing the tracking algorithm to control the laser 
scanner, we are able to increase the scanning resolution 3-4 
times for the object-of-interest without using more time per 
frame; 45-60% of the maximum achievable gain. The gains 
from improved tracking and hence higher resolution in 
regions of interest in range data can enable precise later 
interaction by robots.  

Future work will focus on demonstrating the laser 
scanner (and the internal tracking algorithm) capabilities for 
visual servoing and grasping in more complex scenarios. 
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Figure 8. Performance indicators per frame for  sequence 0 (a,b) and 3 
(c,d). X-axis all graphs: Frame number. (a,c): Tracker's object coverage in 
%. (b,d): Frame rate increase; crosses: max possible, circle: achieved.  

 

 

 

TABLE II. RESULTS ON TRACKING AND REAL-TIME PERFORMANCE 

Data 

set 

Object 

segmentation 

(%) 

Background 

segmentation 

(%) 

Time 

consumption  

(ms) 

mean Std mean std mean std 

0 78.6 3.3 0.0 0.0 28.9 1.6 

1 90.3 3.8 0.1 0.4 29.1 1.9 

2 89.3 3.6 0.0 0.0 29.2 1.1 

3 92.4 3.7 0.0 0.0 28.9 1.0 

4  
(rotating 
box) 

79.7 9.0 0.0 0.0 29.2 1.9 

4 
(robot) 

95.3 1.6 0.0 0.0 28.9 0.8 
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Figure 9. Tracking based on edge images where edges have been 
separated (bottom) and not separated (top) in sequence 4. White contour 
indicates object contour (pointed to by arrows). Same initial silhouette 
used in both cases. Without edge separation, the tracker looses the object 
after approximately 45 frames. 

TABLE III: RESULTS ON FOVEATION 

Data set 

Object 

coverage 

(%) 

Frame rate 

increase 

Max frame 

rate 

increase 

Achieved 

frame 

rate 

increase 

vs. max 

possible 

mean std mean std mean Std mean 

0 100.0 0.0 4.0 0.2 9.1 0.3 44.4 

1 100.0 0.0 3.4 0.6 7.1 2.5 51.0 

2 99.5 2.2 3.2 0.5 5.7 1.8 59.7 

3 100.0 0.0 3.5 0.8 7.6 3.1 50.8 

4 
(rotating 
box) 

100.0 0.0 3.7 0.4 7.1 1.0 52.2 

4 
(robot) 

100.0 0.0 3.0 0.4 5.9 1.8 53.4 
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