

�

Abstract²This paper presents a real-time contour tracking
and object segmentation algorithm for 3D range images. The
algorithm is used to control a novel micro-mirror based
imaging laser scanner, which provides a dynamic trade-off
between resolution and frame rate. The micro-mirrors are
controllable, enabling us to speed up acquisition significantly
by only sampling on the object that is tracked and of interest.
As the hardware is under development, we benchmark our
algorithms on data from a SICK LMS100-10000 laser scanner
mounted on a tilting platform. We find that objects are tracked
and segmented well on pixel-level; that frame rate/resolution
can be increased 3-4 times through our approach compared to
scanners having static scan trajectories, and that the algorithm
runs in 30 ms/image on a Intel Core i7 CPU using a single core.

I. INTRODUCTION

Sensors providing high-quality, densely sampled 3D data
are enabling technology for robots that interact with objects
in their surroundings. Laser scanners are popular sensors for
robots due to that they provide high-quality data with a
reasonable data rate, also in adverse conditions like sunlight.
The data quality and robustness is largely due to that laser
range scanners acquire distance measurements by
sequentially illuminating and measuring individual scene
points.

To obtain an image, the point measured must be scanned
across the scene. Today, most laser scanners do this by using
a 1D mirror providing only a single (usually horizontal) line
of data. By themselves, such laser scanners are unable to
provide an image of their surroundings, which strongly
limits the amount of scene interpretation that can be done.
To obtain 3D images, some sort of tilting platform is
employed which tilts the sensor such that the image can be
built up one line at a time. This means that each image will
take a few seconds to capture, usually too slow for real-time
interaction with moving objects. By adjusting the vertical
tilting speed of the laser scanner, it is possible to trade lower
image resolution for a higher frame rate.

In this paper, we present a combined hardware and
software concept providing high quality, high resolution
imaging laser scanner data of objects that are automatically
tracked by the sensor itself.

Our approach is based on a hardware concept of
controllable micro-mirrors, combined with a fast time-of-
flight range measurement unit. The range measurement unit
provides data at a constant rate. By controlling the vertical

* Research supported by EC Grant 248623 under FP7.

All authors are with SINTEF ICT, PB 124 Blindern, 0314 Oslo, Norway.
E-mail: {jtt,trk,asbe,osk}@sintef.no.

speed of the mirror, we can dynamically make a tradeoff
between frame rate and spatial resolution. This enables
foveation, meaning that we acquire high quality data only on
the object being tracked, possibly even with a higher frame
rate than for a regular scanner.

To control these mirrors in real-time, we present a real-
time tracking algorithm which is capable of both track and
pixel-level segment objects based on a very rough
initialization of the object contour. This tracking algorithm
enables us to only capture data on the object of interest, thus
speeding up acquisition. The high-quality, high frame-rate
data provided by this concept can open up for better object
interaction and recognition in dynamic scenes.

The main contributions of this paper are a real-time
computationally efficient algorithm which tracks and
segments object in 3D range data, and the application of this
algorithm to control a foveating 3D laser scanner.

The rest of this paper is organized as follows: Section II
describes related work. Section III provides a system
overview and section IV details the actual tracking
algorithm. Section V provides our experimental setup, which
results are presented in section VI. We conclude the paper in
section VII.

II. RELATED WORK

For this paper, related work encompasses both foveating
sensors, as well object tracking algorithms for range images.

A. Foveating sensor

Existing foveating sensors are mainly realized by pixel
grouping on sensors or macro hardware movements.

Sensor-based approaches include early foveating sensors
[1] that mimic the human eye by using a log polar mapping
of the imaging sensor area. Other approaches enabled
dynamic grouping of sensor pixels [2], adaptively
controlling which CMOS imaging sensor areas to read with
high resolution.

Hardware movement methods use a pan/tilt unit to
achieve foveation. Bimbo and Pernici [3] present a system
that foveates by positioning a 2D camera with an external
pan/tilt device. Similarly, a combination of range sensors to
get active gazing control is presented in [4]. Here data from
a 2D laser range finder is used detect obstacles, which in
turn is used to pan/tilt an external time-of-flight camera. In
[5] a laser scanner is mounted on motorized head to enable a
roundly swinging motion to increase sampling density in
predefined regions of interest.

)DVW�+LJK�5HVROXWLRQ��'�/DVHU�6FDQQLQJ�
E\�5HDO-7LPH�2EMHFW�7UDFNLQJ�DQG�6HJPHQWDWLRQ

Jens T. Thielemann*, Asbjørn Berge, Øystein Skotheim and Trine Kirkhus

By contrast, the micro-mirror based approach that we are
developing does not need large sensor movements. By also
including real-time tracking software, we also solve the
problem of where to gaze, which previous approaches often
have left unresolved.

B. Tracking in range data:

Object tracking in range images tend to focus on
template alignment approaches, such as the Iterative Closest
Points algorithm (ICP) [6], an iterative approach for aligning
a prior 3D model. The ICP algorithm is not sufficiently
robust for use alone, due to bad convergence properties.
Particle filters has been used in conjunction with ICP
alignment, both in registration and tracking approaches [7].
Modern software libraries for point clouds follow this
strategy [8], using GPUs to achieve real-time performance.
Active contours using filtered range images and visual
images is discussed in [9], which also uses a particle filter
using depth information for target positioning. Other real-
time contour based approaches for object tracking and
segmentation [10] do not provide the necessary features for
working on range images.

Our approach works on range data alone without
requiring a prior model of the object to be tracked. Instead,
the tracker is initialized with a rough contour of the object,
which is updated and refined on pixel-level by the tracker
automatically. Furthermore, we do not need GPUs to
achieve real-time performance.

III. SYSTEM OVERVIEW

The foveating 3D sensor under development is built on
three key technologies: controllable micro-mirrors, 3D time-
of-flight hardware and a 3D tracking algorithms that is used
to control the scanning trajectory.

The controllable micro-mirrors and time-of-flight
hardware enable the scene to be sampled with varying
spatial and temporal resolution. The tracking algorithm
employed enables the control of spatial and temporal
resolution to happen in an intuitive fashion. Combined, this
sensor concept can provide significantly better data than
existing sensors. This is partly due to the measurement
principle itself, and partly due to the sensor's foveation
capability.

A. Micro-mirrors and 3D time-of-flight hardware

The hardware is an adaptive 3D sensor that uses
lightweight, robust micro-mechanical scanning elements for
flexible two-dimensional beam-steering of fast single point
time-of-flight distance measurements. Figure 1 outlines the

hardware setup.

The pulsed laser beam and time-of-flight hardware will
be capable of measuring up to one million 3D points per
second. To build up images from these single measurements,
the laser beam must be swept across the scene. This is
accomplished by using controllable micro-mirrors that allow
for very precise and rapid control of the beam direction.

Current laser scanners use large mirrors that move in
fixed patterns (e.g., constant oscillation or rotation). This
means that an extraordinary amount of power is required to
enable rapid shifts of scanning patterns. The use of novel
quasi-static MEMS scanning mirrors [12] enables the system
to provide foveation ± i.e., rapidly controlling the beam
direction and thus adjusting the spatial and temporal
resolution of the acquired data.

B. 3D foveation

3D foveation enables the sensor to go beyond simply
providing data with high spatial or temporal resolution ± it
allows the sensor to adjust the resolution according to the
scene.

 Representing 3D data as range images ease later analysis
of the data on the robot. In principle, the use of controllable
micro-mirrors allows arbitrary scanning patterns. The
scanning patterns are chosen to be raster scans to facilitate
the conversion into range images. Foveation by increasing
resolution is achieved by adjusting the vertical mirror speed.

Figure 1. Hardware concept of the 3D sensor. The emitted modulated (1)
laser beam (2) is scanned by mirrors (3) on the target. The light reflected
from the measured surface (4) is collected by mirrors (5), reaches the
single element detector (7) via collecting optics (6). The distance to the
target point follows from the traveling time of received (8) with respect to
the emitted signal (1) [11].

54321

ZoomedUniform Tracked object

Figure 2. Time series showing how the foveation software uses saliency analysis of a uniform image from the scene to capture an image zoomed in at the
region-of-interest. A sinusoidal mirror plan (1) is used to capture the uniform intensity (2) and range images (intensity image is shown to ease visual scene
interpretation). The object of interest is detected in the the captured data (3). A mirror plan for zoomed data acquisition (4) is computed from the sampling
density function. This results in zoomed intensity (5) and range images, where the object-of-interest appears magnified due to the increased sampling density

We have chosen a foveation regime as outlined in Figure
2. In this regime, every second frame is acquired as a normal
range image with uniform sampling. This range image is
analyzed by our tracking algorithm to determine the current
silhouette of the object-of-interest. Based on this object
silhouette, WKH�DOWHUQDWLQJ�VHFRQG�IUDPH�LV�´]RRPHG in´��L�H�,
acquired with increased spatial resolution on the tracked
object. The number of data points is equal for both frames to
maintain frame rate, and the full field-of-view is kept. This
real-time feedback system is detailed further in [13].

IV. TRACKING ALGORITHM

Our tracking approach consists of three distinct steps,
each one adapted for working on range images in real-time.
The object to be tracked is represented as an object
silhouette. This silhouette is tracked and updated according
to camera/object motion. This is done in a three step process
consisting of edge detection (section A), rigid tracking
(section B) and contour adaption (section C). Section D
outlines how we use the object silhouette to control the
sensor and provide high resolution imagery of the tracked
object.

A. Edge detection

As basis for later tracking and segmentation, we rapidly
calculate the depth transitions in the scene. This is done in
two steps: Detection through bearing angles followed by
separation and normalization. The range image 4ç:Qá R;,
containing the range to each point in the pixel with
coordinate :Qá R; for time P, is used as input for the
algorithm.

Edge detection through bearing angles: Harati [14]
introduce the notion of "bearing angle" for detecting edges
in range images. The "bearing angle" indicates the angle
between the measurement beam and the surface (Figure 3).
For real depth edges, the bearing angle will be close to 0 or
180 degrees. This measurement can be used to create a more
robust method for edge detection than simply detect the
depth of edge transitions, followed by a hard threshold.

Harati [14] calculate these explicitly using trigonometric
formulas. To gain speed, we instead calculate the
approximated bearing angle measure in each pixel position
:QáR; for the Q direction at the time P as

$çáè:Qá R; L �¿è4ç:Qá R;
4ç:Qá R;

where ¿è4ç:Qá R; is the detected edge strength in Q
direction, and 4ç:Qá R; is the measured range. The

calculation of ¿è4ç:Qá R; is done using a Sobel-operator.
This provides a rapid near depth-invariant measure for edge
strength. Approximated bearing angle in R direction,
$çáé:Qá R;, is calculated using the same procedure but with
the edge filter transposed. This provides two images
$çáè:Qá R; and $çáé:Qá R; providing edge magnitude rowwise
and columnwise.

Edge separation and normalization: We focus on tracking
foreground objects, meaning that the background always
will be behind the object. This means that we expect that the
sign of the detected edge magnitudes to align with the edge
direction on the object itself. On the left edge of the object
we expect the edge magnitude to be positive, on the right
side negative. Similar assumptions are made for top/down of
the object.

To better preserve edges prior to smoothing, we separate
$çáè:Qá R; and $ç áé:Qá R; according to the sign of the edge
magnitude such that we get a bearing angle measurement #ç
that is directional

#ç:Qá Rá .; L ���:sá����:rá$çáé:Qá R;�3;;

#ç:Qá Rá4; L ���:sá����:ráF$çáé:Qá R;�3;;
#ç:QáRá7; L ���:sá����:rá$çáè:Qá R;�3;;

#ç:QáRá&; L ���:sá����:ráF$çáè:QáR;�3;;

B(u,v-2)

R(u,v-1)

B(u,v+2)

B(u,v)
R(u,v)Sensor

Figure 3. Illustration of bearing angle $:QáR;. Sensor measures
neighbouring pixels 4:Qá R; and 4:Qá R F s;. The bearing angle allows
depth-invariant classification of depth transitions.

(a) Original range image

(b) Edge images 'ç

(c) Zero-crossing images <ç

Figure 4. Result of edge detection on an example range image (a). Edge
images (b) and zero-crossing images (c) shown in top-down order left,
right, top and bottom edges.

where #ç:Qá Rá .;á#ç:Qá Rá4;á#ç:Qá Rá7;á#ç:Qá Rá&; are
respectively Left, Right, Up and Down edge magnitude
images, and 3 is a chosen upper limit for normalization.

Each of these four images #ç:Qá Rá�; are separately
smoothed with a 1D Gaussian filter providing us edge
magnitude images 'ç:Qá Rá�; as shown in Figure 4b.
%ç:Qá Rá .; and %ç:Qá Rá4; are filtered with a horizontal 1D
Gauss filter, for %ç:Qá Rá7; and %ç:Qá Rá&; a vertical filter is
used. Due to that the edges have previously been separated
according to direction, they are preserved better during
smoothing.

 The 'ç images are then convolved with a 1D filter
providing images <:Qá Rá�; for edge detection through zero-
crossings (Figure 4c). In effect, we have found that these
<:Qá Rá�; images are also well suited for detecting sudden
changes in normal direction.

B. Rigid tracking

It is reasonable to assume that the object does not change
shape significantly from frame to frame. A fully rigid
tracking of the object from the previous frame to the next
can thus be done. This is done by minimizing the following
cost function with respect to a movement :IáJ; in pixels
from the previous frame, in the :Qá R; direction:

ó:4ç?5á4ç á'ç á<ç áIáJ;

L s

0¼
Í óÖâáçâèå:'ç á ?áIáJ;

ÖÔÐ¼E Ù

0È
Í óåÔáÚØ:4ç á4ç?5á KáIáJ;

âÕÐÈ

where % is the contour of the object in the previous frame
4ç?5, and 1 is the pixels covered by the object in previous
frame. 0¼ and 0È indicate the number of points in % and 1.
óÖâáçâèåand óåÔáÚØ are cost functions described later, and Ù

is a scaling factor. The contour % may be unordered, which
allows for rapid updates when maintaining % through the
algorithm. Furthermore, % may belong to multiple disjoint
objects that are moving at the same speed.

 The cost function chosen ensures that the object
silhouette rigidly snaps to object depth edges similar to the
one from the previous image, while also ensuring that the
underlying range data match between the previous and
current frame.

Contour cost term: The contour part óÖâáçâèå of the cost
function is determined by first extracting the object contour
on pixel-level, and determining with four-connectivity which
neighboring pixels are background. The relative placement
of the contour pixel and the neighboring background pixel
gives a direction @Ü. Each contour pixel ?Ü is thus
represented as its pixel coordinates :QÜá RÜ; plus the direction
@Ü, E being index. @Ü may be either L, R, U or D. This is used
to choose which 'ç:Qá Rá�; image to perform edge strength
lookup in.

If a contour pixel has multiple background pixel
neighbors, the contour pixel is repeated accordingly in %.
The tracker then uses the following formula for calculating
the contour alignment per contour pixel:

óÖâáçâèå:'ç á ?Ü áIáJ; L F'ç:QÜ EIá RÜ E Já@Ü;
Due to the previous smoothing of 'ç, the convergence

basin of óÖâáçâèå is widened. The contour term is minimal if
the contour precisely aligns with the object's depth edges.

Range cost term: Simultaneously with the extraction of

the contour, all foreground object pixels KÝ L kQÝá RÝo are

enumerated into 1. These are used as basis for a template
matching, by calculating the range cost term as

óåÔáÚØk4ç á4ç?5á KÝ áIáJoL .4ç?5kQÝá RÝoF 4çkQÝ EIá RÝ E Jo.

The range cost term is minimal if the objects precisely
align over each other.

Actual optimization: ó is optimized with respect to
:IáJ; using the simplex direct search method (Nelder-
Mead), initialized with a step size of 1 pixel. This provides
an estimate of object movement in pixels from the previous
frame to the current frame.

C. Adaption of object's contour

The third part of the tracking adapts the current contour
of the object to any changes in the object contour due to
change of viewpoint or object shape.

First, the object silhouette is moved according to the
:IáJ; established in the previous rigid tracking, and the
contour % of the moved silhouette is extracted.

The goal of the algorithm is to adapt the contour % such
that <ç:�á�á@; P r on the contour, and <ç:�á�á@; O r on the
immediate outside of the contour, where @ chosen according
to the contour's local direction.

Before running the actual contour update, we establish
@àÜáand @àÔëas the minimum and maximum range of
accepted new object pixels. These are calculated by
estimating minimum and maximum range of the object in
the previous range image 4ç?5 plus a pre-defined tolerance.

To perform fast pixel-level contour updates, a state-
image 5 is maintained with equal resolution to the original
range image. Each pixel contains the state of each pixel,
which is defined as follows to enable 8-bit state pixel
storage:

5:Qá R; L �]rå� �������������

twv ����������

tww ��������������������

The image 5:QáR; is initialized based on the object
silhouette and the definition above, setting background
pixels to 0. Furthermore, a variable 8 is set to 0, indicating
the current pixel value in 5 of the background. 8 is
incremented with each iteration over all %ä� Pixels 5:Qá R; Q
8 are considered to be background.

After these initial steps, each contour pixel ?Ü L :QÜ á RÜ;
in % is processed according to the algorithm described in
Figure 5, and illustrated in Figure 6.

For each contour pixel, we check whether the four-
connected neighbours are background pixels. The position of

the found background pixels determines which <ç:Qá Rá�; are
used to update the contour in each direction.

The update will convert some contour pixels into
background pixels. However, to ensure that % can be
processed in an unordered fashion, it is important that these
newly created "background" pixels are not considered to be
background pixel in the current iteration over %. This is done
by setting such "background" pixels in 5:Qá R; to 8 E s.

In the subsequent iteration, 8 is increased by one. As
pixels 5:Qá R; Q 8 are considered background, fresh
background pixels from the previous iteration will now be

considered background. Incrementing 8 is the element in the
algorithm that allows % to be unordered and belonging to
multiple disjoint objects.

The algorithm is repeated a suitable number of iterations
(typically 5). This allows each contour pixel to move up to 5
pixels. The final object silhouette is extracted as $æ L
�5:Qá R; R twv which we subsequently normalize by
performing morphological opening. The algorithm has been
implemented in a mixture of Matlab and C.

D. Using the Tracking Result for Foveation

The binary silhouette generated by the tracker can
directly be employed for making the scanner foveate. A
vertical region is picked out which surrounds the detected
object. This region is sent to the laser scanner for acquisition
of the next frame. To be able to capture the object even in
the case where unexpected motion happens, a somewhat
wider region than the object silhouette is chosen. This
enables us to cope with the inherent latency induced by
using a previously acquired image to predict where the next
region-of-interest is located. In addition, mirror inertia
places constraints on the minimum size of regions-of-
interest.

V. EXPERIMENTS

We tested the tracking algorithm and foveation
mechanism on real data of moving objects, where the sensor
itself is either static or moving.

x For each contour pixel ?Ü Ð % do:

o For each pixel 2� L � :Qãá Rã; of the four-connected

neighbours of ?Ü L :QÜ á RÜ;, check whether 2 is

background by checking that 5kQãá Rão Q �8. If so:

� Calculate the direction @ that relates ?Ü and 2 as
@ L 2 F ?Ü , and classify it as ?× into one of L,
R, U, D.

� If <ç:QÜ á RÜ á ?×; O r shrink the object by one
pixel by removing :QÜ á RÜ; from the object:

x Set 5:QÜ á RÜ; L 8 E s, making it
background. By not setting it to 8 (or 0),
later processed contour pixels in this
iteration will not consider this pixel
background, ensuring that the order each
contour pixel is processed makes no
difference.

x Set ?Ü
ñ L � ?Ü F ?× L :QÜ

ñá RÜ
ñ; , effectively

moving the contour pixel one pixel
inwards

x If 5:QÜ
ñáRÜ

ñ; �L �tww, then convert this
foreground pixel into a contour pixel:

o Set 5:QÜ
ñá RÜ

ñ; = 254

o Replace the entry ?Ü in % with ?Ü
ñ

x Else:

o Remove ?Ü from the %, as ?Ü
ñ already

either is contour or background

x For each of the four-connected neighbours

0 L :Qáá Rá; of ?Ü
ñ:

o If 5:Qáá Rá; L tww, set 5:Qáá Rá; L
twv and insert 0 into %. This ensures
that newly exposed foreground pixels
becomes contour pixels.

� If <ç:Qãá Rãá ?×; �P �r, expand the object by one

pixel:

x Check that @àÜá Q 4çkLÜ á LÝo Q @àÔë.

Abort expansion if this is not fulfilled.

x Insert 2 into %�

x Set 5:LÜ á LÝ; �L �twv to indicate that it is

contour
o If ?Ü has no background pixels as neighbours, it is

removed from %, and 5:QÜ á RÜ; is set to 255.

x Increase 8 by 1.

Figure 5. One iteration of the algorithm for adjusting contour according
to object boundaries.

F C 0

F C 0

F C 0

F C 0

F C 0

F C 0

F C 0

F C 0

F C 0

F F C 0

F C 0

F C 0 0

F C 0 0

F C 0

F C 0

F C C 0

F C 2 1 0

F C C 0

F F C 0

F F C 0

F C 0

F C 0

F C1 0

F C 1 0

F C2 0

F F C 0

F F C 0

F C 0

a)

c)

b)

d)

Figure 6. Illustration of the adaption of the object contour. Red lines
indicate the contour to be fitted, and colors show the value of pixels in
5:Qá R;. F indicates foreground, C contour, and 0-2 is background. a) Initial
contour and previous image. b)-d) adaption to the changed contour in
current image through iterations, b) before iteration (c) first iteration
:8 L r; d) second iteration :8 L s;. Lower right of contour is grown in a
straight-forward manner. Top left concavity requires shrinking of contour.
In c) the contour is moved one step in, creating a new background pixel
which is initialized to 8 E s L s. Regardless of processing order, %5 and %6
will not consider the new background pixel to be background, as the criteria
for background pixels is 5:Qá R; Q 8 and 8 L r. d) shows final adaption.

As the actual hardware is not yet available, we have used
a line-scanning SICK LMS100-10000 laser scanner placed
on a tilt unit to capture test data. The tilt unit enabled
building a 2D raster image of range measurements. The data
acquisition took roughly 30 seconds per image, so stop-
motion animation techniques were used to acquire data
sequences of moving objects. The foveation was done using
a hardware simulator. The data are summarized in Table I.

Based on these data, we benchmark the tracker's
performance; quantify the resulting performance on 3D data
quality enhancement; and the tracker's real-time
performance.

A. Assessing tracker performance

We have used the tracker algorithm to track objects in
the pre-recorded sequences. The tracker has been initialized
by the user clicking on a single range pixel in the first range
image of the sequence, and range pixels being less than
N L räu meters from the selected pixel have been selected as
the initial silhouette of the image. The manual initialization
could easily be replaced by an automatic initialization from a
robot at a later stage. This silhouette is subsequently updated
and refined.

The tracker is benchmarked by comparing the silhouette
produced by the algorithm to a manual ground truth for the
recorded sequences. The ground truth is created by
indicating the moving object as using a binary mask per
sequence frame. To provide quantification of the tracking
and segmentation, this is viewed as a segmentation problem.
We estimate how many ground truth object pixels that are
classified as object pixels (object segmentation), and how
many ground truth background pixels that are misclassified
as object pixels (background segmentation). We normalize
these numbers respectively by the number of object and
background pixels and report them in percent.

To measure the effect of the separation of edge directions
before smoothing as outlined in section IV.D we have
performed tracking of objects with and without separation
and compared results.

In addition, we measure the average time per frame for
the tracking algorithm when run on a 2.0 GHz Intel Core i7.

B. Assessing foveation performance

In our foveation regime, the benefit of foveation is to
provide high spatial resolution in detected regions-of-
interest, while maintaining the overall frame rate. A non-

foveating system that uses the same underlying hardware
would by comparison have to provide the same high spatial
resolution in the whole scene. Because of the constant
sampling rate, this would result in a net lower frame rate for
the system. We therefore quantify foveation as the increase
in sensor frame rate compared to a non-foveating system.

The chosen foveation regime keeps a constant number of
data points per range image. Therefore, the maximum
achievable frame rate increase is limited by the field-of-view
covered by the object-of-interest. As a result, the foveated
system becomes equal to a non-foveated system if the object
covers the full field-of-view. We report on the average frame
rate increase enabled by the foveation system both in
absolute numbers compared to the sensor without foveation,
and relative to the maximum achievable frame rate increase.

It is furthermore crucial for a foveating system that it
actually foveates on the object of interest. We therefore also
measure how much of the ground truth object silhouette that
is covered by the selected foveated region.

VI. RESULTS AND DISCUSSION

Figure 7 show some example results of applying the
tracker to a sequence with moving camera and tracking a
non-static object. We see that the object is tracked and
segmented well from the surroundings even with a poor
starting silhouette. After a few frames, the contour
converges to the same contour regardless of starting contour.

Table II provides the numerical results for the tracker
applied to different sequences. We see that the tracker is able
to well keep track of the object, with little spillover to the
background. The time consumption is approximately 30 ms
for all images, utilizing a single core on an Intel Core i7
CPU, which is meets the system's realtime demands.

Table I: DESCRIPTION OF SIMULATED DATA SETS
Data

set
Scene description

Camera

motion

0 Robot moving from left to right Static

1 Robot moving towards the 3D sensor Static

2 Robot moving from left to right Moving

3 Robot moving towards the 3D sensor. Moving

4
Several objects moving in different ways
�VPDOO�URERW��URWDWLQJ�ER[��«�

Moving

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

Frame 1 Frame 3 Frame 5 Frame 45 Frame 91

Figure 7. Tracking results for robot moving relative to the sensor with different initial contour. User has clicked on a range pixel on the robot, and all pixels
closer than N meters is initial contour, as shown in frame 1. Top: N L räs. Bottom: N L räu. White line shows tracked contour. Both camera and robot is
moving.

Table III shows the foveation performance. We achieve a
three- to fourfold increase of frame rate/resolution, and are
unable to reach the maximum possible frame rate increase.
This is due the fact to that the sensor foveates on a
somewhat larger scene region than the object itself, as
indicated in section IV.D.

The average numbers in Table III are broken up per
frame in Figure 8 for some selected sequences. We see that
the tracker robustly track and provide foveated data on the
object of interest. For the sequence where the camera and
object gets gradually closer to each other, we can see that the
maximum achievable frame rate increase of foveation
degrades as the object gets closer.

For objects that have less defined edges (or more internal
structure), we found that the edge separation improved
results. Figure 9 shows an example of an object (a plant)
where the tracking result is improved due to edge separation.

VII. CONCLUSION

This paper proposes a real-time tracking and object
segmentation algorithm for 3D range images, and applies it
to for 3D foveation. The algorithm is computationally

inexpensive, real-time capable and requires no other
initialization than a rough initial object silhouette.

The algorithm leverages several important properties of
3D laser scan data to achieve real-time performance,
primarily that edges and normal transitions define well
object boundaries for foreground objects.

We have shown that this enables robust object tracking
and segmentation for such objects. Furthermore, by
employing the tracking algorithm to control the laser
scanner, we are able to increase the scanning resolution 3-4
times for the object-of-interest without using more time per
frame; 45-60% of the maximum achievable gain. The gains
from improved tracking and hence higher resolution in
regions of interest in range data can enable precise later
interaction by robots.

Future work will focus on demonstrating the laser
scanner (and the internal tracking algorithm) capabilities for
visual servoing and grasping in more complex scenarios.

ACKNOWLEDGMENT

The authors thank Peter Einramhof and Robert Schwarz
(Technische Universität Wien, Austria) for recording the
data used for experiments, and both them and the EU TACO
project consortium for fruitful discussions.

0 5 10 15 20 25 30

0

50

100

0 5 10 15 20 25 30
0

5

10

Frame rate increase

0 5 10 15 20 25 30

0

50

100

0 5 10 15 20 25 30
0

5

10

(a)

(b)

(c)

(d)

Figure 8. Performance indicators per frame for sequence 0 (a,b) and 3
(c,d). X-axis all graphs: Frame number. (a,c): Tracker's object coverage in
%. (b,d): Frame rate increase; crosses: max possible, circle: achieved.

TABLE II. RESULTS ON TRACKING AND REAL-TIME PERFORMANCE

Data

set

Object

segmentation

(%)

Background

segmentation

(%)

Time

consumption

(ms)

mean Std mean std mean std

0 78.6 3.3 0.0 0.0 28.9 1.6

1 90.3 3.8 0.1 0.4 29.1 1.9

2 89.3 3.6 0.0 0.0 29.2 1.1

3 92.4 3.7 0.0 0.0 28.9 1.0

4
(rotating
box)

79.7 9.0 0.0 0.0 29.2 1.9

4
(robot)

95.3 1.6 0.0 0.0 28.9 0.8

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

Frame 1 Frame 45 Frame 91

Figure 9. Tracking based on edge images where edges have been
separated (bottom) and not separated (top) in sequence 4. White contour
indicates object contour (pointed to by arrows). Same initial silhouette
used in both cases. Without edge separation, the tracker looses the object
after approximately 45 frames.

TABLE III: RESULTS ON FOVEATION

Data set

Object

coverage

(%)

Frame rate

increase

Max frame

rate

increase

Achieved

frame

rate

increase

vs. max

possible

mean std mean std mean Std mean

0 100.0 0.0 4.0 0.2 9.1 0.3 44.4

1 100.0 0.0 3.4 0.6 7.1 2.5 51.0

2 99.5 2.2 3.2 0.5 5.7 1.8 59.7

3 100.0 0.0 3.5 0.8 7.6 3.1 50.8

4
(rotating
box)

100.0 0.0 3.7 0.4 7.1 1.0 52.2

4
(robot)

100.0 0.0 3.0 0.4 5.9 1.8 53.4

VIII. REFERENCES

[1] J. Boluda, F. Pardo, T. Kayser, J. Pérez and J. Pelechano, "A new
foveated space-variant camera for robotic applications," in Electronics,
Circuits, and Systems, 1996. ICECS'96., Proceedings of the Third
IEEE International Conference on, 1996.

[2] D. Bailey and C. Bouganis, "Reconfigurable foveated active vision
system," in Sensing Technology, 2008. ICST 2008. 3rd International
Conference on, 2008.

[3] A. D. Bimbo and F. Pernici, "Towards on-line saccade planning for
high-resolution image sensing," Pattern Recogn. Lett., vol. 27, pp.
1826-1834, 2006.

[4] '��'URHVFKHO��'��+RO]��-��6W�FNOHU�DQG�6��%HKQNH���8VLQJ�WLPH-of-
flight cameras with active gaze control for 3D collision avoidance," in
Robotics and Automation (ICRA), 2010 IEEE International
Conference on, 2010.

[5] T. Yoshida, K. Irie, E. Koyanagi and M. Tomono, "3D laser scanner
with gazing ability," in Robotics and Automation (ICRA), 2011 IEEE
International Conference on, 2011.

[6] S. Rusinkiewicz and M. Levoy, "Efficient variants of the ICP
algorithm," in 3-D Digital Imaging and Modeling, 2001. Proceedings.
Third International Conference on, 2001.

[7] M. Ben Ghorbel, M. Baklouti and S. Couvet, "3D head pose estimation
and tracking using particle filtering and ICP algorithm," Articulated
Motion and Deformable Objects, pp. 224--237, 2010.

[8] R. Ueda, Tracking 3D objects with Point Cloud Library, 2012.

[9] J. Lee, S. Lankton and A. Tannenbaum, "Object Tracking and Target
Reacquisition Based on 3-D Range Data for Moving Vehicles," IEEE
Trans. on Image Proc., vol. 20, no. 10, pp. 2912-2924, 2011.

[10] Y. Shi and W. Karl, "Real-time tracking using level sets," in Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, 2005.

[11] T. Sandner, T. Grasshoff and M. &. S. H. Wildenhain, "Synchronized
micro scanner array for large aperature receiver optics of LIDAR
systems," in SPIE 7594, 2010.

[12] D. Jung, D. Kallweit, T. Sandner, H. Conrad, H. Schenk and H.
Lakner, "Fabrication of 3D comb drive microscanners by mechanically
induced permanent displacement," in SPIE 7208, 2009.

[13] G. Breivik, J. Thielemann, A. Berge and O. Skotheim, "A motion
based real-time foveation control loop for rapid and relevant 3D laser
scanning," in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on, 2011.

[14] A. Harati, S. Gächter and R. Siegwart, "Fast range image segmentation
for indoor 3D-SLAM," in 6th IFAC Symp. on Intelligent Autonomous
Vehicles, 2006.

