
1 

Proceedings of the RAAD 2011 

20th International Workshop on Robotics in Alpe-Adria-Danube Region 

October 5-7, 2011, Brno, Czech Republic 

 

 

 

Real-time foveation system based on 

 dense 2.5D data 
 

Robert Schwarz
1
, Peter Einramhof

1
, and Markus Vincze

1
 

 
1
 Automation and Control Institute 

Vienna University of Technology 

Gusshausstr. 27-29, 1040 Vienna, Austria 

{schwarz, einramhof, vincze}@acin.tuwien.ac.at 

 

 
Abstract. This paper presents a real-time task-based foveation system using data from 2.5D 

sensors that have recently gained increasing popularity in robotics. Typical tasks in this field 

are navigation, object detection and grasping. 

Compared to the “classic” approach of using only 2D laser scanners, 2.5D sensors provide a 

much higher amount of data resulting in increased computational complexity. To address this 

challenge, our system uses the concept of foveation (inspired by the human attention 

mechanism) to focus only on regions relevant to the task and reduce the density of the data 

points outside these regions, e.g. for grasping a cup, the points of the cup are more important 

than those of the table.  

Motivated by Itti et al. single feature activation maps are calculated and combined into a 

saliency map (see Fig. 1). In contrast to their approach to use 2D features (orientation, 

intensity and color) we use 3D cues like jump edges, roof edges and planar patches as 

features. The foveation system adjusts the density of the data points based on the saliency 

map. Additionally, locally dominant features are used to segment the range image. 
Keywords. 3D sensors, visual attention, robot perception  

 

 
 

 

1. Introduction 
 

Recent research indicates a near exponential growing 

of robotics, the expected market size in 2025 of 

robots in the home environment will be twice the size 

as in classic manufacturing industry
1
. For mobile 

robots the shift from organized, well-known 

environments to private homes is challenging. 

Besides the requirements to the embodiment 

(hardware), the perception system needs to cope with 

the less structured environment. While in the 

industrial field of application the tasks e.g. 

localization and obstacle avoidance can be solved 

with a 2D laser scanner, the tasks in a home 

environment are more challenging because of 

cluttered scenes, formless surfaces like curtains, and 

protruding surfaces like table tops – in short, the 

three-dimensional character has to be taken into 

account. 

To deal with this challenge, robots must be able to 

perceive the surroundings accordingly. 3D sensors 

(stereo vision, structured light, TOF-cameras) 

provide us with the required (range) data. In 

                                                 
1 Source: Japan Robotics Association (www.jara.jp) 

comparison to 2D laser scanners, 3D sensors supply 

robots with high amounts of data, but the problem 

lies in this very aspect: the processing of the whole 

data can be computationally expensive, especially for 

high resolution sensors. An idea to overcome this 

problem is the concept of attention, inspired by 

nature where living creatures face also the problem of 

high amounts of sensory data and limited processing 

capacities. Using only the “relevant” aspects of the 

input reduces the requirements to the brain. The same 

mechanism can be applied to sensors for mobile 

robots. 

In that context Thielemann et al. (Thielemann et al. 

2010) have introduced a new 3D sensor concept of 

the TACO project
2
. The sensor incorporates a single-

beam laser range measurement unit, micro-mirrors 

which enable to deflect the beam to interesting 

regions, and an attention mechanism. Like the human 

eye which foveates on objects of interest, the sensor 

scans the whole scene with a constant resolution, 

decides on these data which regions are interesting 

for a given task, and acquires these regions in the 

next step at higher resolution, that is, it foveates. The 

                                                 
2 http://www.taco-project.eu/ 
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laser measurement unit is based on the time-of-flight 

principle; the expected sampling rate is one million 

samples per second. Each sample consists of the 

measured range and the mirror deflection angles, and 

represents one point in 3D. 

The major contribution of this paper is the foveation 

system for such a sensor. The system is able to 

analyze unfoveated data from the sensor and 

calculate the task-dependent interest regions.  The 

result is used to control the trajectory of the mirrors 

and to get higher resolutions in these regions. The 

attention system will work in the mirror control loop 

for the sensor which is under development. 

The approach can also be used for existing high 

resolution 3D sensors as a part of the processing 

chain: the high resolution 3D data is sub-sampled, 

subjected to fast image analysis and high resolution 

data is only kept in regions of interest. 

 

The rest of the paper is organized as follows:  section 

2 gives an overview of computational visual attention 

systems inspired by the human vision. In section 3 

we introduce our attention system and discuss each 

processing step in detail. Section 4 shows how 

representative test data was recorded, since the actual 

sensor is under development. Results of the attention 

system are shown in section 5, followed by the 

conclusion and an outlook in section 6.  

 

 

2. Related Work  
 

This section is divided into two parts. The first part 

gives an overview of visual attention systems; the 

second part presents existing 3D sensors that might 

provide input data to our attention system. 

 

The cognitive process of selectively concentrating on 

one aspect of the environment while ignoring others 

is called attention. In nature evolution has favored the 

concepts of selective attention to overcome the 

problem of high amounts of sensory input and limited 

processing capabilities. One example of attention is 

the so-called cocktail-party problem: in a room full of 

different voices it is possible for humans to focus on 

one certain person and to follow the conversation. 

The similar concept exists also for the visual sense 

and is an intensely studied topic within psychology 

and cognitive science – but it also made entrance into 

computer vision and robotics. 

Inspired by the human attention system, Itti et al. (Itti 

et al., 1998) proposed an attention system model with 

the ability to simulate the pre-attention of humans. 

The system attempts to predict for a given scene 

which areas of the image will draw attention. The 

input image is decomposed into a set of feature maps 

which represent the local appearance of color, 

intensity and orientation discontinuities. The model 

combines these feature maps into a single saliency 

map that highlights regions of interest. 

In a winner-take-all (WTA) manner the most salient 

region draws the focus of attention towards it, by 

subsequent inhibition the path of the focus is 

determined.  

Besides the three features Itti et al. use, Frintrop et al. 

(Frintrop et al., 2010) and Wolfe (Wolfe, 1994) give 

clues that these three are only a selection of useful 

cues. The third dimension can be used as a depth cue 

to guide and modulate the deployment of attention. 

Depth data from various sensor modalities has been 

used as input for attention systems: for example 

(Maki et al. 2000), (Bruce et al. 2005) and (Björkman 

et al. 2006) use stereo cameras. Frintrop et al. use 

depth as well as reflectivity data from a 3D laser 

scanner (Frintrop et al., 2010) and Ouerhani et al. use 

3D cameras (Ouerhani and Hügli, 2000). 

The classic approach of combining single feature 

maps to a saliency map does not take the task into 

account, only simulates the pre-attentive, stimulus-

driven attention system. The counterpart to the 

bottom-up approach is to incorporate the task in a 

top-down manner. Wolfe´s model considers 

information of the goal by selecting features with 

high differences between the target and the rest of the 

scene; only features that are useful for the task are 

considered.  

Top-down information can be incorporated in various 

ways: searching for salient regions can be restricted 

to certain regions, e.g., the street when searching for 

persons, but ignore the sky (Torralba, 2003a). The 

gist (semantic category) of a scene such as “office 

scene” or “street” guides eye movements (Torralba, 

2003b) and can be computed from the feature 

channels (Siagian and Itti, 2009). If prior knowledge 

about a target is to be used to perform visual search, 

the target similarity of the most salient regions in 

bottom-up saliency maps can be investigated (Rao et 

al., 2002). More advanced approaches are biasing the 

feature types (Navalpakkam and Itti, 2006) or tuning 

conspicuity maps (Hamker, 2005). Other approaches 

inhibit target irrelevant regions (Choi et al., 2004) or 

excite target-relevant regions (Hamker, 2005) or use 

both (Navalpakkam and Itti, 2005). In order to 

imitate human-like behaviour, bottom-up saliency 

(uniqueness) and top-down saliency (target 

relevance) have to be fused (Rasolzadeh et al., 2010). 

 

Nowadays there are four different sensor systems 

available which provide range data: inspired by the 

human vision, stereo vision systems are working on 

the same principle as the human depth perception; 

images from two cameras with a different viewpoint 

of the same scene are combined into a disparity map, 

which represents the depth information. The 

calculation can be done on embedded-systems, on the 

CPU or on the GPU, depending on the actual stereo 

system. In areas where no correspondence can be 

determined between the two images, no valid range 

data can be calculated and holes occur. Due to its 
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passive sensing the system depends on the lighting 

conditions in the environment. 

In contrast to passive stereo vision systems, 

structured light based systems replace the second 

camera by a projector that projects a known light 

pattern. The depth information is calculated from the 

distortion of this pattern due to the 3D structure of 

the scene. One novel representative of this principle 

is the Kinect
3
, which provides camera frame rates.  

Since camera and projector in structured light 

systems and both cameras in stereo systems view the 

scene from slightly different viewpoints, regions 

without valid data can result due to occlusion.  

The time-of-flight cameras emit modulated light and 

measure the time it takes for the reflected light to 

return to the sensor. These systems are vulnerable to 

background lightning and interference with other 

sensors of the same kind. 

In comparison to these three concepts, the tilting 

laser scanner measures only one data point at a time; 

a conventional 2D laser scanner is mounted on a 

tilting unit to introduce the third degree of freedom. 

Due to the sequential measurement and the relatively 

slow speed, the video frame rate is low compared to 

the three other 3D sensor concepts. 

Similar to the tilting laser scanner, the TACO project 

develops a 3D sensor system which uses also one 

laser beam, but in contrast to the tilting laser scanner 

the deflection of the beam is achieved by micro-

mirrors instead of a rotating (macro) mirror and 

tilting unit (Surmann et al., 2001). The expected 

output of the sensor will be one million samples per 

second, which is equivalent to a resolution of 

250x160 at a frame rate of 25 Hz. While this is the 

default resolution of the sensor, higher resolutions 

can be provided at lower frame rate and vice versa. 

 

 

3. Approach 
 

In this section we give an overview of our approach 

of using range data for a foveation system and 

describe the particular steps of the processing chain 

in detail. 

 

3.1. Overview 
As mentioned in section 2, Itti et al.’s original 

architecture of bottom-up visual attention (Itti et al., 

1998) is based on the idea that an input image is 

decomposed into a set of feature maps (colors, 

intensities and orientations) which are then combined 

into a so-called saliency map. 

Instead of using 2D images, our work focuses on 

range images, so we adopt the principal architecture 

of Itti and instead of using 2D features we replace 

them with 3D features derived from the range image. 

Fig. 1 shows the structure of our foveation system, 

the input is a range image which is equivalent to a 

                                                 
3 www.xbox.com/kinect 

structured point cloud that maintains the initial 

neighborhood information. Depending on the sensor 

model the data is filtered to reduce the noise and to 

deal with outliers. 

After filtering individual feature activation maps are 

calculated. Each feature activation map provides the 

location of the respective feature within the scene. 

The resolution of the map is the same as the one of 

the input range image; the values are normalized to 

[0…1]. 

The feature maps are then combined into a saliency 

map that has again the same resolution as the feature 

maps. The combination of the feature maps is 

influenced by the task; only task-relevant feature 

maps which model the task-condition, are considered 

and used for the calculation of the saliency map. 

Based on the saliency map the foveation system 

focuses only on regions of interest and outputs the 

foveated point cloud. 

Additionally, the comparison of the feature activation 

maps is used to create a “label map” in which each 

pixel represents the locally dominant feature. 

Aside the 3D features another aspect is different to 

Itti’s architecture; while his system is a task-

independent model of the visual attention, we 

incorporate the task and the context of the scene, 

which influences the selection and the combination of 

the features. 

 

 

Fig. 1. Overview of the attention system concept; input data 

(yellow), processing chain (grey), output (green), 

context (red) 

 

3.2. Noise reduction 

The original range image is available in the form of 

three 2D arrays corresponding to the range and the 

two mirror deflection angles of the measurements.  

Before the feature extraction can be done, filtering of 

the sensor data is necessary. Using the advantage of 

the structured data in the range image (neighborhood 

of each pixel is known) filter mechanism similar to 

that used for 2D images can be applied. A Gaussian 

filter with a 3×3 kernel is used to reduce the Gaussian 
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noise, additionally the adaptive Wiener filter (Jain, 

1989) is applied, which is based on statistics 

estimated from a local 3×3 neighborhood of each 

pixel.  

 

3.3. Feature extraction 

After filtering the input range image is decomposed 

into different feature activation maps, which 

represent the appearance of a feature; e.g. a feature 

activation map of the feature “color red” shows only 

response to red areas of the image. Since we are 

dealing with range images instead of RGB images, 

the classic features (color, orientation and intensity) 

are not feasible.  

For our attention system we consider features 

relevant to a given task. For grasping (a cup on a 

table) the interesting parts are objects on a support 

plane; this means transitions from vertical to 

horizontal surfaces as well as jumps in the depth 

values indicate object boundaries. Additionally the 

geometry of a scene can be used for further cues, e.g. 

grasping objects defines a specific height range 

which is covered by the gripper, or for obstacle 

avoidance only the nearest objects are interesting. 

Features designated by these aspects are jump and 

roof edges (object boundaries), vertical and 

horizontal surfaces (object properties), and distance 

and height ranges (geometry of the scene). 

In the following we describe the individual features 

that we have implemented: 

 

Jump edges (Fig. 2c) appear in scenes where an 

object is occluded by another object or itself; 

discontinuities in the depth values occur at the object 

boundaries. For the calculation of the jump edges the 

neighborhood of the data points is useful, the 

difference of the left and the right neighbor can be 

used to detect jump edges in row direction, the same 

can be done for columns with the upper and lower 

neighbor. To combine both values the gradient 

magnitude is calculated (Eq. 1). In the following we 

used the notation of i and j as row- and column-

index, r represents the range value. 

 

 
 (1) 

 

 

Roof edges (Fig. 2d) do not represent discontinuities 

in the range value, but discontinuities in the direction 

of the normal vectors and appear for example two 

differently oriented surface patches intersect. 

The first step is to calculate the surface normals 

which can be done in different ways (PCA, least-

square fit on points in a defined distance (Rusu et al. 

2008)). For our implementation we decided on an 

approach only using the direct neighboring data 

points in the data array. In comparison to the 

approach of using a neighborhood of a defined spatial 

extent, the benefit is that no threshold (e.g. 5cm 

radius) is needed to decide if a point is considered for 

the surface normal estimation or not. The downside is 

a greater sensitivity to noise; however, the latter was 

reduced in the filtering step. 

For the calculation of the normals we use the cross 

product of the vectors  and , 

where p is the 3D data point (x,y,z) computed from 

the associated range data and mirror deflection 

angles. To reduce the noise we repeated this with the 

diagonal points and calculate the mean of both values 

(Eq. 2-3). 

 

 

  
(2) 

 

   (3) 

 

The dot product of the normal vector and his right 

neighbor indicates discontinuities of the surface 

orientation in rows; the same applies to columns with 

the neighbor below. The gradient magnitude 

corresponds to the actual strength of roof edges (Eq. 

4). 

 

 
 (4) 

 

 

The classification in horizontal and vertical surfaces 

(Fig. 2d, 2f) makes only sense if the pose of the 

sensor is known. The pose can be estimated from 

previous frames (e.g. RANSAC) or from additional 

sensors (IMU). With the given pose the 

categorization into two main directions can be done 

by calculating the angular deviation (Eq. 5) of the 

normal vectors of the data points from the vertical 

direction . 

 

  (5) 

 

Vertical surfaces have values of  close to 0°, 

horizontal ones close to 90°. 

 

The height range (Fig. 2b) is also used as a feature 

for our attention system. For some tasks it is practical 

to inhibit irrelevant regions. For the task of searching 

cups on a table points far away from an expected 

height can be ignored, only points in the height range 

of the table top are considered. The notion of 

“height” only makes sense if the sensor pose is 

known. 

 

The range (Fig. 2a) itself as a feature can be used to 

raise saliency on near object. For grasping, objects 

near the robot are more interesting than objects far 

away, for self localization the opposite applies. 
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(a)                                    (b) 

 

   
(c)                                    (d) 

 

   
(e)                                    (f) 

   
(g)                                    (h) 

Fig. 2. Examples for the feature activation maps; (a) range 

image (b) height range feature (c) jump edges (d) 

roof edges (e) horizontal (f) vertical surface feature 

(g) saliency map (h) label map 

 

3.3. Saliency calculation and label map 

The classic approach for attention used by Itti uses 

only weighted summarization of the feature maps. 

Motivated by Wolfe´s model, which applies task-

dependent selection of the feature maps and 

combines only task relevant features, our system uses 

a similar approach: The task influences the 

parameters of the height and range feature maps (e.g. 

expected height range) and only feature maps 

relevant to the task are combined into the saliency 

map (Fig. 2g). The selected feature maps are 

multiplied so that only regions are salient, where all 

feature maps show activation; each cell in the array 

of the saliency map is the result of the multiplication 

of the corresponding normalized values from the 

feature activation maps, and hence the values also 

lies in the range of [0…1].  

Additionally, of the selected feature maps the 

corresponding pixel positions are compared. The 

locally dominant feature (at a pixel position) is the 

one with the highest activation. In case two or more 

feature activations have the same value, the following 

prioritization scheme is applied: jump edges before 

roof edges, then vertical surfaces and finally 

horizontal surfaces. The result is a label map (Fig. 

2h), which separates the scene in segments with the 

same dominant feature. 

 

 

4. Data acquisition 
 

The expected output of the TACO sensor will look 

similar to the data of a tilting laser scanner; the 

principle of the measurement is the same, only the 

sampling rates are different. To emulate the TACO 

sensor we used a SICK LMS-100 which is mounted 

on a tilt unit (SCHUNK PW70). The sensor itself is 

mounted on top of a robot in a height of 

approximately 1.2m to allow capturing table scenes 

as well as providing data for navigation (see Fig. 3). 

One scan takes about 20s, which is 500 times slower 

than the expected 25Hz of the TACO sensor. The 

resolution of the test data is 360×500 with a field of 

view of 90°×62.5° (horizontal×vertical).  

Different scenarios were recorded (table top scenes, 

kitchen scene, navigation trough offices, grasping 

scenario), the data contains about 2000 frames. 

 

 

Fig. 3 Tilting laser scanner mounted on top of a mobile 

robot. This setup was used for data acquisition 

 

5. Results 
 

As input for our attention system the test data is sub-

sampled to a resolution of 180×125; the higher 

resolution is used to simulate the foveation ability of 

the sensor and allows zooming in by the factor 2 

horizontally and by the factor 4 vertically. 

Fig. 4 shows detailed results for three different 

scenarios: objects on a table (left column), opening a 

door (middle column) and obstacle detection (right 

column). The final saliency maps are marking 

regions which are interesting for the task grasping 

(cup on a table and door handle); for the task obstacle 

detection the saliency map represents nearby objects 

on the floor, which are used for obstacle avoidance 

(right). 

For the evaluation of the foveation mechanism we 

generated ground truth for seven sequences. In 

sequence #001 - #003 an obstacle on the floor is 

marked (cf. Fig. 4 right column), in the rest of the 

sequences objects on different tables are used as 

reference. Tab. 1 shows the mean and the standard 
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deviation of saliency values on the object vs. outside 

the object. The saliency is up to 4 times higher on the 

objects than on the rest of the scene.  

The time consumption of the attention system is 

about 60ms, which correlates to a frame rate of 16Hz.  

 

    
saliency on 

object 

saliency 

outside 
object 

time con-

sumption [s] 

Seq. Frames mean std mean std mean std 

#001 90 0,105 0,012 0,042 0,000 0,064 0,003 

#002 67 0,104 0,014 0,032 0,002 0,065 0,004 

#003 60 0,101 0,011 0,034 0,001 0,063 0,002 

#004 105 0,218 0,015 0,067 0,003 0,064 0,003 

#005 80 0,264 0,006 0,068 0,004 0,064 0,003 

#006 70 0,299 0,005 0,086 0,002 0,065 0,004 

#007 60 0,133 0,005 0,093 0,001 0,066 0,004 

Tab. 1 Mean and standard deviation of saliency on ground 

truth object and outside the object; Time 

consumption on Intel Quad Core @ 2.4GHz 

 
 

6. Conclusion and outlook 
 

In this paper we presented a foveation system based 

on dense 2.5D range data. Our main focus hereby 

was on demonstrating how to combine features 

derived only from 3D data for computing meaningful 

saliency maps for tasks from service robotics such as 

detecting objects on a table or obstacles. The 

resulting saliency maps can be used to control the 

TACO sensor to foveate on regions of interest and 

furthermore to provide higher resolution. 

Future work includes improving real-time 

performance through C++ implementation. Also 

additional features will be implemented and the 

combination of the feature maps will get more 

complex as presented here. 
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